STANDING WAVES OF REACTION-DIFFUSION EQUATIONS ON AN UNBOUNDED GRAPH WITH TWO VERTICES

被引:5
|
作者
Iwasaki, Satoru [1 ]
Jimbo, Shuichi [2 ]
Morita, Yoshihisa [3 ]
机构
[1] Osaka Univ, Informat & Phys Sci, Grad Sch Informat Sci & Technol, Yamadaoka 1-5, Suita, Osaka 5650871, Japan
[2] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[3] Ryukoku Univ, Dept Appl Math & Informat, Seta 5202194, Japan
关键词
reaction-diffusion equation; unbounded metric graph; standing waves; stability; SCHNAKENBERG MODEL; EXISTENCE; STABILITY; STATES;
D O I
10.1137/21M1454572
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with bistable reaction-diffusion equations in a domain of a metric graph with two vertices, that is, a domain of multiple half-lines with two junctions connected by a line segment. We prove that there exist two types of standing waves: standing front waves and unimodal waves, if the line segment is long enough. We also numerically show the exact number of standing wave solutions for a cubic nonlinearity and for a piecewise linear case. The stability and instability of the standing wave solutions are also investigated. Standing waves play a role in blocking the front propagation.
引用
收藏
页码:1733 / 1763
页数:31
相关论文
共 50 条
  • [41] Characterization of Cocycle Attractors for Nonautonomous Reaction-Diffusion Equations
    Cardoso, C. A.
    Langa, J. A.
    Obaya, R.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (08):
  • [42] Generalized Fronts in Reaction-Diffusion Equations with Bistable Nonlinearity
    Ya Qin SHU
    Wan Tong LI
    Nai Wei LIU
    Acta Mathematica Sinica,English Series, 2012, (08) : 1633 - 1646
  • [43] EXISTENCE OF STATIONARY PULSES FOR NONLOCAL REACTION-DIFFUSION EQUATIONS
    Volpert, Vitaly
    Vougalter, Vviali
    DOCUMENTA MATHEMATICA, 2014, 19 : 1141 - 1153
  • [44] Fast-diffusion limit for reaction-diffusion equations with multiplicative noise
    Mohammed, Wael W.
    Bloemker, Dirk
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 496 (02)
  • [45] Stability properties for two coupled reaction-diffusion equations
    Bajodek, Mathieu
    Lhachemi, Hugo
    Valmorbida, Giorgio
    IFAC PAPERSONLINE, 2023, 56 (02): : 11401 - 11406
  • [46] INSTABILITY OF MULTI-SPOT PATTERNS IN SHADOW SYSTEMS OF REACTION-DIFFUSION EQUATIONS
    Ei, Shin-Ichiro
    Ikeda, Kota
    Yanagida, Eiji
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (02) : 717 - 736
  • [47] Asymptotic Behavior of Random Reaction-diffusion Delay Equations Driven by Colored Noise
    Ma, Wenjun
    Ma, Qiaozhen
    TAIWANESE JOURNAL OF MATHEMATICS, 2023, 27 (04): : 759 - 798
  • [48] Speed of traveling waves for monotone reaction-diffusion systems as a function of diffusion coefficients
    Kazmierczak, Bogdan
    Sneyd, James
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 424
  • [49] Moving and jumping spot in a two-dimensional reaction-diffusion model
    Xie, Shuangquan
    Kolokolnikov, Theodore
    NONLINEARITY, 2017, 30 (04) : 1536 - 1563
  • [50] Existence of bistable waves for a nonlocal and nonmonotone reaction-diffusion equation
    Trofimchuk, Sergei
    Volpert, Vitaly
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) : 721 - 739