ESTIMATES OF THE GAPS BETWEEN CONSECUTIVE EIGENVALUES OF LAPLACIAN

被引:8
作者
Chen, Daguang [1 ]
Zheng, Tao [2 ]
Yang, Hongcang [3 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[3] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100080, Peoples R China
关键词
Laplacian; consecutive eigenvalues; test function; Riemannian manifold; hyperbolic space; PAYNE-POLYA-WEINBERGER; 1ST; 2; EIGENVALUES; SCHRODINGER-OPERATORS; DIRICHLET LAPLACIANS; RIEMANNIAN-MANIFOLDS; N-DIMENSIONS; BOUNDS; INEQUALITIES; CONJECTURE; PROOF;
D O I
10.2140/pjm.2016.282.293
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the eigenvalue problem of the Dirichlet Laplacian on a bounded domain in Euclidean space R-n, we obtain estimates for the upper bounds of the gaps between consecutive eigenvalues which are the best possible in terms of the orders of the eigenvalues. Therefore, it is reasonable to conjecture that this type of estimate also holds for the eigenvalue problem on a Riemannian manifold. We give some particular examples.
引用
收藏
页码:293 / 311
页数:19
相关论文
共 39 条
[1]   PROOF OF THE FUNDAMENTAL GAP CONJECTURE [J].
Andrews, Ben ;
Clutterbuck, Julie .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :899-916
[2]  
[Anonymous], 1996, NONLINEAR PROBLEMS A
[3]  
[Anonymous], LONDON MATH SOC LECT
[4]  
[Anonymous], C P LECT NOTES GEOME
[5]   ISOPERIMETRIC BOUNDS FOR HIGHER EIGENVALUE RATIOS FOR THE N-DIMENSIONAL FIXED MEMBRANE PROBLEM [J].
ASHBAUGH, MS ;
BENGURIA, RD .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 :977-985
[6]   PROOF OF THE PAYNE-POLYA-WEINBERGER CONJECTURE [J].
ASHBAUGH, MS ;
BENGURIA, RD .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 25 (01) :19-29
[7]   MORE BOUNDS ON EIGENVALUE RATIOS FOR DIRICHLET LAPLACIANS IN N DIMENSIONS [J].
ASHBAUGH, MS ;
BENGURIA, RD .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (06) :1622-1651
[8]   The universal eigenvalue bounds of Payne-Polya-Weinberger, Hile-Protter, and H C Yang [J].
Ashbaugh, MS .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2002, 112 (01) :3-30
[9]   A SHARP BOUND FOR THE RATIO OF THE 1ST 2 EIGENVALUES OF DIRICHLET LAPLACIANS AND EXTENSIONS [J].
ASHBAUGH, MS ;
BENGURIA, RD .
ANNALS OF MATHEMATICS, 1992, 135 (03) :601-628
[10]   A 2ND PROOF OF THE PAYNE-POLYA-WEINBERGER CONJECTURE [J].
ASHBAUGH, MS ;
BENGURIA, RD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :181-190