Bioinspired Protein/Peptide Loaded 3D Printed PLGA Scaffold Promotes Bone Regeneration

被引:15
|
作者
Song, Xiaoliang [1 ]
Li, Xianxian [2 ]
Wang, Fengyu [3 ]
Wang, Li [3 ]
Lv, Li [3 ]
Xie, Qing [3 ]
Zhang, Xu [3 ]
Shao, Xinzhong [3 ]
机构
[1] Hebei Med Univ, Dept Hand Surg, Shijiazhuang, Peoples R China
[2] Changzhi Med Coll, Dept Hematol Oncol, Heji Hosp, Changzhi, Peoples R China
[3] Third Hosp Hebei Med Univ, Dept Hand Surg, Shijiazhuang, Peoples R China
来源
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY | 2022年 / 10卷
关键词
PLGA scaffold; 3D printing; protein; peptide decoration; bio-inspired; bone defect; AMORPHOUS CALCIUM-PHOSPHATE; SURFACE MODIFICATION; STEM-CELLS; HYDROXYAPATITE; FABRICATION; DIFFERENTIATION; NANOFIBERS; IMPLANTS; BEHAVIOR; PEPTIDE;
D O I
10.3389/fbioe.2022.832727
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: This study was aimed to investigate the effect of three dimensional (3D)printed poly lactide-co-glycolide (PLGA) scaffolds combined with Gly-Phe-Hyp-Gly-Arg (GFOGER) and bone morphogenetic protein 9 (BMP-9) on the repair of large bone defects.Methods: 3D printing method was used to produce PLGA scaffolds, and the sample was viewed by both optical microscopy and SEM, XRD analysis, water absorption and compressive strength analysis, etc. The rabbits were divided into six groups randomly and bone defect models were constructed (6 mm in diameter and 9 mm in depth): control group (n = 2), sham group (n = 4), model group (n = 4) and model + scaffold group (n = 4 rabbits for each group, 0%,2% and 4%). The rabbits were sacrificed at the 4th and 12th weeks after surgery, and the samples were collected for quantitative analysis of new bone mineral density by micro-CT, histopathological observation, immunohistochemistry and Western blot to detect the protein expression of osteoblast-related genes.Results: This scaffold presented acceptable mechanical properties and slower degradation rates. After surface modification with GFOGER peptide and BMP-9, the scaffold demonstrated enhanced new bone mineral deposition and density over the course of a 12 week in vivo study. Histological analysis and WB confirmed that this scaffold up-regulated the expression of Runx7, OCN, COL-1 and SP7, contributing to the noted uniform trabeculae formation and new bone regeneration.Conclusions: The application of this strategy in the manufacture of composite scaffolds provided extensive guidance for the application of bone tissue engineering.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Development of a 3D multifunctional collagen scaffold impregnated with peptide LL-37 for vascularised bone tissue regeneration
    Megha, Kizhakkepurakkal Balachandran
    Syama, Santhakumar
    Sangeetha, Vijayan Padmalayathil
    Vandana, Unnikrishnan
    Oyane, Ayako
    Mohanan, Parayanthala Valappil
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2024, 652
  • [22] A 3D Printed Composite Scaffold Loaded with Clodronate to Regenerate Osteoporotic Bone: In Vitro Characterization
    Cometa, Stefania
    Bonifacio, Maria Addolorata
    Tranquillo, Elisabetta
    Gloria, Antonio
    Domingos, Marco
    De Giglio, Elvira
    POLYMERS, 2021, 13 (01) : 1 - 17
  • [23] Bone Regeneration Capability of 3D Printed Ceramic Scaffolds
    Kim, Ju-Won
    Yang, Byoung-Eun
    Hong, Seok-Jin
    Choi, Hyo-Geun
    Byeon, Sun-Ju
    Lim, Ho-Kyung
    Chung, Sung-Min
    Lee, Jong-Ho
    Byun, Soo-Hwan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (14) : 1 - 13
  • [24] CNT incorporation improves the resolution and stability of porous 3D printed PLGA/HA/CNT scaffolds for bone regeneration
    Kaya, Hatice
    Arici, Sule
    Bulut, Osman
    Bilgili, Fuat
    Ege, Duygu
    BIOMEDICAL MATERIALS, 2023, 18 (05)
  • [25] 3D-printed vascularized biofunctional scaffold for bone regeneration
    Cao, Bojun
    Lin, Jieming
    Tan, Jia
    Li, Jiaxin
    Ran, Zhaoyang
    Deng, Liang
    Hao, Yongqiang
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (03) : 185 - 199
  • [26] Incorporation of forsterite nanoparticles in a 3D printed polylactic acid/ polyvinylpyrrolidone scaffold for bone tissue regeneration applications
    Kazemi, Nafise
    Hassanzadeh-Tabrizi, S. A.
    Koupaei, Narjes
    Ghomi, Hamed
    Masaeli, Elahe
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 305
  • [27] 3D printed magnesium-doped ?-TCP gyroid scaffold with osteogenesis, angiogenesis, immunomodulation properties and bone regeneration capability in vivo
    Qi, Dahu
    Su, Jin
    Li, Song
    Zhu, Hao
    Cheng, Lijin
    Hua, Shuaibin
    Yuan, Xi
    Jiang, Jiawei
    Shu, Zixing
    Shi, Yusheng
    Xiao, Jun
    BIOMATERIALS ADVANCES, 2022, 136
  • [28] Development of hybrid scaffold with biomimetic 3D architecture for bone regeneration
    Vashisth, Priya
    Bellare, Jayesh R.
    NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2018, 14 (04) : 1325 - 1336
  • [29] 3D Printing Hierarchical Porous Nanofibrous Scaffold for Bone Regeneration
    Hu, Zhiai
    Lin, Hengyi
    Wang, Zhenming
    Yi, Yating
    Zou, Shujuan
    Liu, Hao
    Han, Xianglong
    Rong, Xin
    SMALL, 2024,
  • [30] Comparative Efficacies of Collagen-Based 3D Printed PCL/PLGA/β-TCP Composite Block Bone Grafts and Biphasic Calcium Phosphate Bone Substitute for Bone Regeneration
    Hwang, Kyoung-Sub
    Choi, Jae-Won
    Kim, Jae-Hun
    Chung, Ho Yun
    Jin, Songwan
    Shim, Jin-Hyung
    Yun, Won-Soo
    Jeong, Chang-Mo
    Huh, Jung-Bo
    MATERIALS, 2017, 10 (04):