Systemin potentiates the oxidative burst in cultured tomato cells

被引:55
作者
Stennis, MJ
Chandra, S
Ryan, CA
Low, PS
机构
[1] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
[2] Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA
关键词
D O I
10.1104/pp.117.3.1031
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plants that have been wounded by insects or other herbivores may be more susceptible to infection by adventitious microbes. Wound-induced signal molecules, which serve to induce responses in the plant that retard further feeding, might also act to prepare a plant for possible pathogen attack. We have examined the effect of a wound-generated systemic messenger (systemin) on a pathogen-stimulated defense-response marker, the oxidative burst. We observed that neither systemin nor its inactive analog (A-17) was able to directly induce H2O2 biosynthesis in suspension-cultured tomato (Lycopersicon esculentum L.) cells, regardless of the duration of exposure of the cells to the two peptides. Similarly, neither systemin nor A-17 was capable of modifying an oligogalacturonide-elicited oxidative burst, as long as elicitor addition occurred within minutes of treatment with systemin or A-17. In contrast, preexposure of the cell cultures to systemin (but not to A-17) led to a time-dependent enhancement of the oligogalacturonide-elicited oxidative burst. By 12 h of exposure, the H2O2 biosynthetic capacity of systemin-treated cells exceeded that of the control cells by a factor of 16 +/- 2. A similar up-regulation by systemin of a mechanically stimulated oxidative burst was also observed. Because the systemin-induced augmentation in oxidant synthesis is quantitatively prevented by coincubation with 2 mu M cycloheximide, and because the oxidative burst of oligogalacturonic acid-elicited control cells (no systemin exposure) is unaffected by preincubation with cycloheximide, we conclude that systemin enhancement of the tomato-cell oxidative burst requires protein synthesis.
引用
收藏
页码:1031 / 1036
页数:6
相关论文
共 37 条
[1]  
APOSTOL I, 1989, PLANT CELL REP, V7, P692, DOI 10.1007/BF00272063
[2]   RAPID STIMULATION OF AN OXIDATIVE BURST DURING ELICITATION OF CULTURED PLANT-CELLS - ROLE IN DEFENSE AND SIGNAL TRANSDUCTION [J].
APOSTOL, I ;
HEINSTEIN, PF ;
LOW, PS .
PLANT PHYSIOLOGY, 1989, 90 (01) :109-116
[3]   HARPIN, AN ELICITOR OF THE HYPERSENSITIVE RESPONSE IN TOBACCO CAUSED BY ERWINIA-AMYLOVORA, ELICITS ACTIVE OXYGEN PRODUCTION IN SUSPENSION CELLS [J].
BAKER, CJ ;
ORLANDI, EW ;
MOCK, NM .
PLANT PHYSIOLOGY, 1993, 102 (04) :1341-1344
[4]   NEW METHOD FOR QUANTITATIVE-DETERMINATION OF URONIC ACIDS [J].
BLUMENKR.N ;
ASBOEHAN.G .
ANALYTICAL BIOCHEMISTRY, 1973, 54 (02) :484-489
[5]   PLANT PATHOGENESIS-RELATED PROTEINS INDUCED BY VIRUS-INFECTION [J].
BOL, JF ;
LINTHORST, HJM ;
CORNELISSEN, BJC .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1990, 28 :113-138
[6]   ELICITOR-INDUCED AND WOUND-INDUCED OXIDATIVE CROSS-LINKING OF A PROLINE-RICH PLANT-CELL WALL PROTEIN - A NOVEL, RAPID DEFENSE RESPONSE [J].
BRADLEY, DJ ;
KJELLBOM, P ;
LAMB, CJ .
CELL, 1992, 70 (01) :21-30
[7]   RESISTANCE OF CULTURED HIGHER-PLANT CELLS TO POLYETHYLENE GLYCOL-INDUCED WATER-STRESS [J].
BRESSAN, RA ;
HASEGAWA, PM ;
HANDA, AK .
PLANT SCIENCE LETTERS, 1981, 21 (01) :23-30
[8]   The Pto kinase mediates a signaling pathway leading to the oxidative burst in tomato [J].
Chandra, S ;
Martin, GB ;
Low, PS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :13393-13397
[9]   ROLE OF PHOSPHORYLATION IN ELICITATION OF THE OXIDATIVE BURST IN CULTURED SOYBEAN CELLS [J].
CHANDRA, S ;
LOW, PS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4120-4123
[10]   Biosynthesis and action of jasmonates in plants [J].
Creelman, RA ;
Mullet, JE .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1997, 48 :355-381