Deep Segmentation of Abdominal Organs from MRI: off-the-shelf architectures and improvements

被引:0
作者
Furtado, Pedro [1 ]
机构
[1] Univ Coimbra DEI CISUC, Fac Ciencias & Tecnol, Polo 2, P-3030290 Coimbra, Portugal
来源
MEDICAL IMAGING 2021: IMAGE PROCESSING | 2021年 / 11596卷
关键词
Segmentation; DCNN; MRI; abdominal organs;
D O I
10.1117/12.2580849
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Deep Learning outperforms prior art in medical imaging tasks. It has been applied to segmentation of Magnetic Resonance Imaging (MRI) scans, where consecutive slices capture relevant body structures for visualization and diagnosis of medical condition. In this work we investigate experimentally the factors that improve segmentation performance of MRI sequences of abdominal organs, including network architecture, pre-training, data augmentation and improvements to loss function. After comparing segmentation network architectures, we choose the best performing one and experimented improvements (data augmentation, training choices). Finally, metrics are fundamental and IoU of each organ in particular, therefore we change loss function to IoU and evaluate the resulting quality. We show that DeepLabV3 is better than competitors by 20 percentage points (pp) or more (depending on the competitor), data augmentation and further enhancements improve performance of DeepLabV3 by 12 percentage points (pp) in average, and that loss function improves performance by up to 13pp as well. Finally, we discuss challenges and further work.
引用
收藏
页数:6
相关论文
共 13 条
  • [1] Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks
    Chen, Liang
    Bentley, Paul
    Rueckert, Daniel
    [J]. NEUROIMAGE-CLINICAL, 2017, 15 : 633 - 643
  • [2] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [3] Opportunities and obstacles for deep learning in biology and medicine
    Ching, Travers
    Himmelstein, Daniel S.
    Beaulieu-Jones, Brett K.
    Kalinin, Alexandr A.
    Do, Brian T.
    Way, Gregory P.
    Ferrero, Enrico
    Agapow, Paul-Michael
    Zietz, Michael
    Hoffman, Michael M.
    Xie, Wei
    Rosen, Gail L.
    Lengerich, Benjamin J.
    Israeli, Johnny
    Lanchantin, Jack
    Woloszynek, Stephen
    Carpenter, Anne E.
    Shrikumar, Avanti
    Xu, Jinbo
    Cofer, Evan M.
    Lavender, Christopher A.
    Turaga, Srinivas C.
    Alexandari, Amr M.
    Lu, Zhiyong
    Harris, David J.
    DeCaprio, Dave
    Qi, Yanjun
    Kundaje, Anshul
    Peng, Yifan
    Wiley, Laura K.
    Segler, Marwin H. S.
    Boca, Simina M.
    Swamidass, S. Joshua
    Huang, Austin
    Gitter, Anthony
    Greene, Casey S.
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (141)
  • [4] Fast and robust segmentation of the striatum using deep convolutional neural networks
    Choi, Hongyoon
    Jin, Kyong Hwan
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2016, 274 : 146 - 153
  • [5] Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching
    Guo, Yanrong
    Gao, Yaozong
    Shen, Dinggang
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (04) : 1077 - 1089
  • [6] Brain tumor segmentation with Deep Neural Networks
    Havaei, Mohammad
    Davy, Axel
    Warde-Farley, David
    Biard, Antoine
    Courville, Aaron
    Bengio, Yoshua
    Pal, Chris
    Jodoin, Pierre-Marc
    Larochelle, Hugo
    [J]. MEDICAL IMAGE ANALYSIS, 2017, 35 : 18 - 31
  • [7] Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks
    Ibragimov, Bulat
    Xing, Lei
    [J]. MEDICAL PHYSICS, 2017, 44 (02) : 547 - 557
  • [8] Kavur A., 2020, CHAOS CHALLENGE COMB, P2
  • [9] Performance of an Artificial Multi-observer Deep Neural Network for Fully Automated Segmentation of Polycystic Kidneys
    Kline, Timothy L.
    Korfiatis, Panagiotis
    Edwards, Marie E.
    Blais, Jaime D.
    Czerwiec, Frank S.
    Harris, Peter C.
    King, Bernard F.
    Torres, Vicente E.
    Erickson, Bradley J.
    [J]. JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) : 442 - 448
  • [10] 3D multi-scale FCN with random modality voxel dropout learning for Intervertebral Disc Localization and Segmentation from Multi-modality MR Images
    Li, Xiaomeng
    Dou, Qi
    Chen, Hao
    Fu, Chi-Wing
    Qi, Xiaojuan
    Belavy, Daniel L.
    Armbrecht, Gabriele
    Felsenberg, Dieter
    Zheng, Guoyan
    Heng, Pheng-Ann
    [J]. MEDICAL IMAGE ANALYSIS, 2018, 45 : 41 - 54