Clinical Review of Smartphone Applications in Parkinson's Disease

被引:5
作者
Tripathi, Susmit [1 ,2 ]
Malhotra, Ashwin [1 ,2 ]
Qazi, Murtaza [3 ]
Chou, Jingyuan [1 ]
Wang, Fei [1 ]
Barkan, Samantha [1 ]
Hellmers, Natalie [1 ]
Henchcliffe, Claire [1 ,4 ]
Sarva, Harini [1 ]
机构
[1] New York Presbyterian Hosp, Weill Cornell Med Ctr, Dept Neurol, New York, NY USA
[2] Mem Sloan Kettering Canc Ctr, Dept Neurol, 1275 York Ave, New York, NY 10021 USA
[3] Weill Cornell Med Qatar, Educ City, Qatar
[4] Univ Calif Irvine, Dept Neurol, Irvine, CA 92717 USA
关键词
Parkinson's disease; smartphone applications; Apps; movement modulation aides; remote monitoring; telemedicine; OBJECTIVE MEASUREMENT; GAIT; VALIDATION; SYMPTOMS; SYSTEM;
D O I
10.1097/NRL.0000000000000413
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Parkinson's disease (PD) is the second leading neurodegenerative disease worldwide. Important advances in monitoring and treatment have been made in recent years. This article reviews literature on utility of smartphone applications in monitoring PD symptoms that may ultimately facilitate improved patient care, and on movement modulation as a potential therapeutic. Review Summary: Novel mobile phone applications can provide one-time and/or continuous data to monitor PD motor symptoms in person or remotely, that may support precise therapeutic adjustments and management decisions. Apps have also been developed for medication management and treatment. Conclusions: Smartphone applications provide a wide array of platforms allowing for meaningful short-term and long-term data collection and are also being tested for intervention. However, the variability of the applications and the need to translate complicated sensor data may hinder immediate clinical applicability. Future studies should involve stake-holders early in the design process to promote usability and streamline the interface between patients, clinicians, and PD apps.
引用
收藏
页码:183 / 193
页数:11
相关论文
共 46 条
[1]   Machine learning-based motor assessment of Parkinson's disease using postural sway, gait and lifestyle features on crowdsourced smartphone data [J].
Abujrida, Hamza ;
Agu, Emmanuel ;
Pahlavan, Kaveh .
BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2020, 6 (03)
[2]   Detecting and monitoring the symptoms of Parkinson's disease using smartphones: A pilot study [J].
Arora, S. ;
Venkataraman, V. ;
Zhan, A. ;
Donohue, S. ;
Biglan, K. M. ;
Dorsey, E. R. ;
Little, M. A. .
PARKINSONISM & RELATED DISORDERS, 2015, 21 (06) :650-653
[3]   Smartphone motor testing to distinguish idiopathic REM sleep behavior disorder, controls, and PD [J].
Arora, Siddharth ;
Baig, Fand ;
Lo, Christine ;
Barber, Thomas R. ;
Lawton, Michael A. ;
Zhan, Andong ;
Rolinski, Michel ;
Ruffmann, Claudio ;
Klein, Johannes C. ;
Rumbold, Jane ;
Louvel, Amandine ;
Zaiwalla, Zenobia ;
Lennox, Graham ;
Quinnell, Tim ;
Dennis, Gary ;
Wade-Martins, Richard ;
Ben-Shlomo, Yoav ;
Little, Max A. ;
Hu, Michele T. .
NEUROLOGY, 2018, 91 (16) :1528-1538
[4]   Wearable Assistant for Parkinson's Disease Patients With the Freezing of Gait Symptom [J].
Baechlin, Marc ;
Plotnik, Meir ;
Roggen, Daniel ;
Maidan, Inbal ;
Hausdorff, Jeffrey M. ;
Giladi, Nir ;
Troester, Gerhard .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2010, 14 (02) :436-446
[5]   A "HOLTER" for Parkinson's disease: Validation of the ability to detect on-off states using the REMPARK system [J].
Bayes, Angels ;
Samba, Albert ;
Prats, Anna ;
Perez-Lopez, Carlos ;
Crespo-Maraver, Maricruz ;
Manuel Moreno, Juan ;
Alcaine, Sheila ;
Rodriguez-Molinero, Alejandro ;
Mestre, Berta ;
Quispe, Paola ;
de Barros, Ana Correia ;
Castro, Rui ;
Costa, Alberto ;
Annicchiarico, Roberta ;
Browne, Patrick ;
Counihan, Tim ;
Lewy, Hadas ;
Vainstein, Gabriel ;
Quinlan, Leo R. ;
Sweeney, Dean ;
OLaighin, Gearoid ;
Rovira, Jordi ;
Rodrigue z-Martin, Daniel ;
Cabestany, Joan .
GAIT & POSTURE, 2018, 59 :1-6
[6]   The Coronavirus Disease 2019 Crisis as Catalyst for Telemedicine for Chronic Neurological Disorders [J].
Bloem, Bastiaan R. ;
Dorsey, E. Ray ;
Okun, Michael S. .
JAMA NEUROLOGY, 2020, 77 (08) :927-928
[7]   Smartphone-Based Evaluation of Postural Stability in Parkinson's Disease Patients During Quiet Stance [J].
Borzi, Luigi ;
Fornara, Silvia ;
Amato, Federica ;
Olmo, Gabriella ;
Artusi, Carlo Alberto ;
Lopiano, Leonardo .
ELECTRONICS, 2020, 9 (06)
[8]   The mPower study, Parkinson disease mobile data collected using ResearchKit [J].
Bot, Brian M. ;
Suver, Christine ;
Neto, Elias Chaibub ;
Kellen, Michael ;
Klein, Arno ;
Bare, Christopher ;
Doerr, Megan ;
Pratap, Abhishek ;
Wilbanks, John ;
Dorsey, E. Ray ;
Friend, Stephen H. ;
Trister, Andrew D. .
SCIENTIFIC DATA, 2016, 3
[9]   A novel single-sensor-based method for the detection ofgait-cycle breakdown and freezing of gait in Parkinson's disease [J].
Chomiak, Taylor ;
Xian, Wenbiao ;
Pei, Zhong ;
Hu, Bin .
JOURNAL OF NEURAL TRANSMISSION, 2019, 126 (08) :1029-1036
[10]   Construct validity and test -retest reliability of a free mobile application for spatio-temporal gait analysis in Parkinson ?s disease patients [J].
Clavijo-Buendia, Sergio ;
Molina-Rueda, Francisco ;
Martin-Casas, Patricia ;
Ortega-Bastidas, Paulina ;
Monge-Pereira, Esther ;
Laguarta-Val, Sofia ;
Morales-Cabezas, Matilde ;
Cano-de-la-Cuerda, Roberto .
GAIT & POSTURE, 2020, 79 :86-91