Peroxymonosulfate activation by immobilized CoFe2O4 network for the degradation of sulfamethoxazole

被引:12
作者
Zhu, Xiurong [1 ]
Ge, Lei [2 ]
Yan, Wei [1 ]
Yang, Shengjiong [2 ]
Wang, Gen [2 ]
Miao, Delu [3 ]
Jin, Pengkang [4 ]
机构
[1] Xi An Jiao Tong Univ, Dept Environm Sci & Engn, Xi'an 710049, Shaanxi, Peoples R China
[2] Xian Univ Architecture & Technol, Sch Environm & Municipal Engn, Shaanxi Key Lab Environm Engn, Xi'an 710055, Shaanxi, Peoples R China
[3] Chinese Acad Sci, Inst Proc Engn, CAS Key Lab Green Proc & Engn, State Key Lab Biochem Engn, Beijing 100190, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Human Settlements & Civil Engn, Xi'an 710049, Shaanxi, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2022年 / 10卷 / 03期
基金
国家重点研发计划;
关键词
Advanced oxidation process; Sulfamethoxazole; Network-like structure; Reactive oxygen species; Immobilized CoFe2O4; METAL-ORGANIC FRAMEWORKS; HETEROGENEOUS CATALYSTS; RATE CONSTANTS; BISPHENOL-A; OXIDATION; EFFICIENCY; RADICALS; SULFAMETHAZINE; ATTENUATION; KINETICS;
D O I
10.1016/j.jece.2022.107781
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Heterogeneous activation of peroxymonosulfate (PMS) has been frequently proposed for the degradation of organic pollutants via the generation of reactive oxygen species (ROS). Spinel ferrite such as CoFe2O4 shows great advantage for PMS activation but suffers from aggregation problem and lack of microstructure. Herein, network-like CoFe(2)O(4 )immobilized on volcanic rock was synthesized for PMS activation for degrading sulfa-methoxazole (SMX). The immobilized CoFe2O4 network exhibited good catalytic performance for SMX removal. Systematic investigations, including in situ ATR-FTIR and Raman spectroscopy analysis, chemical quenching experiments and electron paramagnetic resonance (EPR) tests, revealed that a redox cycle of Co2+/Co3+ induced the generation of ROS (SO4 center dot-, OH center dot & nbsp; and O-1(2)) that participated in the degradation of SMX. Background constituents (e.g., inorganic ions and natural organic matters) exhibited limited influence on SMX removal. A continuous flow-through reaction in a fixed-bed column revealed the immobilized CoFe(2)O(4 )network could efficient degrade SMX with long-term durability, which therefore can be a promising catalyst for PMS activation for the degra-dation of SMX.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Efficient heterogeneous activation of peroxymonosulfate by Ag-doped CoFe2O4 nanoparticles for sulfamethoxazole degradation
    Lv, Xinyuan
    Yu, Miao
    Guo, Yali
    Sui, Minghao
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (05):
  • [2] Mesoporous carbon nanospheres encapsulated CoFe2O4 to enhance peroxymonosulfate activation for achieving efficient sulfamethoxazole degradation
    Zhao, Wenhao
    Han, Ruifu
    Ge, Chenglong
    Zhang, Denghui
    Jiang, Chunming
    Zhang, Xuan
    MICROPOROUS AND MESOPOROUS MATERIALS, 2025, 390
  • [3] Highly Efficient Degradation of Sulfamethoxazole Using Activating Peracetic Acid with CoFe2O4/CuO
    Liu, Zhenzhong
    Wan, Siwen
    Wu, Yang
    Wang, Boyan
    Ji, Hongliang
    ACTA PHYSICO-CHIMICA SINICA, 2023, 39 (05)
  • [4] Catalytic degradation of sulfamethoxazole through peroxymonosulfate activated with expanded graphite loaded CoFe2O4 particles
    Xu, Mengjuan
    Li, Jun
    Yan, Yan
    Zhao, Xiuge
    Yan, Jianfei
    Zhang, Yunhong
    Lai, Bo
    Chen, Xi
    Song, Liping
    CHEMICAL ENGINEERING JOURNAL, 2019, 369 : 403 - 413
  • [5] Highly efficient degradation of sulfamethoxazole (SMX) by activating peroxymonosulfate (PMS) with CoFe2O4 in a wide pH range
    Li, Yinghao
    Zhu, Wenjie
    Guo, Qian
    Wang, Xi
    Zhang, Liming
    Gao, Xiaoya
    Luo, Yongming
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 276
  • [6] Activation of peroxymonosulfate by Al2O3-based CoFe2O4 for the degradation of sulfachloropyridazine sodium: Kinetics and mechanism
    Wang, Qiongfang
    Shao, Yisheng
    Gao, Naiyun
    Chu, Wenhai
    Chen, Juxiang
    Lu, Xian
    Zhu, Yanping
    An, Na
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 189 : 176 - 185
  • [7] Heterogeneous activation of peroxymonosulfate for bisphenol A degradation using CoFe2O4 derived by hybrid cobalt-ion hexacyanoferrate nanoparticles
    Long, Xinxin
    Yang, Shengjiong
    Qiu, Xiaojie
    Ding, Dahu
    Feng, Chuanping
    Chen, Rongzhi
    Tan, Jihua
    Wang, Xinming
    Chen, Nan
    Lei, Qin
    CHEMICAL ENGINEERING JOURNAL, 2021, 404
  • [8] Degradation of bisphenol S by peroxymonosulfate activation through monodispersed CoFe2O4 nanoparticles anchored on natural palygorskite
    Li, Yabin
    Chen, Zhonglin
    Qi, Jingyao
    Kang, Jing
    Shen, Jimin
    Yan, Pengwei
    Wang, Weiqiang
    Bi, Lanbo
    Zhang, Xiaoxiao
    Zhu, Xinwei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 277
  • [9] Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4 and MnFe2O4 as a heterogeneous catalyst of peroxymonosulfate
    Tan, Chaoqun
    Gao, Naiyun
    Fu, Dafang
    Deng, Jing
    Deng, Lin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 175 : 47 - 57
  • [10] CoFe2O4/WS2 as a highly active heterogeneous catalyst for the efficient degradation of sulfathiazole by activation of peroxymonosulfate
    Li, Yajuan
    Wang, Qiongfang
    Zhang, Xin
    Dong, Lei
    Yuan, Yulin
    Peng, Cheng
    Zhang, Min
    Rao, Pinhua
    Pervez, Md. Nahid
    Gao, Naiyun
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 57