Optimization of electrostatic interactions in protein-protein complexes

被引:50
作者
Brock, Kelly
Talley, Kemper
Coley, Kacey
Kundrotas, Petras
Alexovy, Emil [1 ]
机构
[1] S Carolina Governor Sch Sci & Math, Hartsville, SC USA
[2] Clemson Univ, Dept Phys, Computat Biophys & Bioinformat, Clemson, SC 29631 USA
关键词
D O I
10.1529/biophysj.107.112367
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In this article, we present a statistical analysis of the electrostatic properties of 298 protein-protein complexes and 356 domain-domain structures extracted from the previously developed database of protein complexes (ProtCom, http:// www.ces.clemson.edu/compbio/protcom). For each structure in the dataset we calculated the total electrostatic energy of the binding and its two components, Coulombic and reaction field energy. It was found that in a vast majority of the cases (> 90%), the total electrostatic component of the binding energy was unfavorable. At the same time, the Coulombic component of the binding energy was found to favor the complex formation while the reaction field component of the binding energy opposed the binding. It was also demonstrated that the components in a wild-type (WT) structure are optimized/anti-optimized with respect to the corresponding distributions, arising from random shuffling of the charged side chains. The degree of this optimization was assessed through the Z-score of WT energy in respect to the random distribution. It was found that the Z-scores of Coulombic interactions peak at a considerably negative value for all 654 cases considered while the Z-score of the reaction field energy varied among different types of complexes. All these findings indicate that the Coulombic interactions within WT protein-protein complexes are optimized to favor the complex formation while the total electrostatic energy predominantly opposes the binding. This observation was used to discriminate WT structures among sets of structural decoys and showed that the electrostatic component of the binding energy is not a good discriminator of the WT; while, Coulombic or reaction field energies perform better depending upon the decoy set used.
引用
收藏
页码:3340 / 3352
页数:13
相关论文
共 86 条
[1]  
Alberts B., 1994, MOL BIOL CELL
[2]   Calculated protein and proton motions coupled to electron transfer:: Electron transfer from QA- to QB in bacterial photosynthetic reaction centers [J].
Alexov, EG ;
Gunner, MR .
BIOCHEMISTRY, 1999, 38 (26) :8253-8270
[3]   Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties [J].
Alexov, EG ;
Gunner, MR .
BIOPHYSICAL JOURNAL, 1997, 72 (05) :2075-2093
[4]   Protein complexes:: structure prediction challenges for the 21st century [J].
Aloy, P ;
Pichaud, M ;
Russell, RB .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2005, 15 (01) :15-22
[5]   InterPreTS: protein Interaction Prediction through Tertiary Structure [J].
Aloy, P ;
Russell, RB .
BIOINFORMATICS, 2003, 19 (01) :161-162
[6]   Poisson-Boltzmann calculations of nonspecific salt effects on protein-protein binding free energies [J].
Bertonati, Claudia ;
Honig, Barry ;
Alexov, Emil .
BIOPHYSICAL JOURNAL, 2007, 92 (06) :1891-1899
[7]   Statistical analysis and prediction of protein-protein interfaces [J].
Bordner, AJ ;
Abagyan, R .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 60 (03) :353-366
[8]   Fast boundary element method for the linear Poisson-Boltzmann equation [J].
Boschitsch, AH ;
Fenley, MO ;
Zhou, HX .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (10) :2741-2754
[9]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[10]   Rapid estimation of solvation energy for simulations of protein-protein association [J].
Cerutti, DS ;
Ten Eyck, LF ;
McCammon, JA .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2005, 1 (01) :143-152