Multiplicity of periodic solutions of Duffing's equations with Lipschitzian condition

被引:1
作者
Wang, ZH [1 ]
机构
[1] Capital Normal Univ, Dept Math, Beijing 100037, Peoples R China
关键词
periodic solution; time mapping; Poincare-Birkhoff twist theorem;
D O I
10.1142/S0252959900000479
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the existence and multiplicity of periodic solutions of Duffing equations x + g(x) = p(t). The author proves an infinity of periodic solutions to the periodically forced nonlinear Duffing equations provided that g(x) satisfies the globally lipschitzian condition and the time-mapping satisfies the weaker oscillating property.
引用
收藏
页码:479 / 488
页数:10
相关论文
共 6 条
[1]   EXISTENCE AND MULTIPLICITY RESULTS FOR PERIODIC-SOLUTIONS OF SEMILINEAR DUFFING EQUATIONS [J].
DING, TR ;
IANNACCI, R ;
ZANOLIN, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 105 (02) :364-409
[3]   A GENERALIZATION OF THE POINCARE-BIRKHOFF THEOREM [J].
DING, WY .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (02) :341-346
[4]  
Hao DY, 1997, J DIFFER EQUATIONS, V133, P98
[5]  
Qian D., 1993, SCI CHINA SER A, V23, P471
[6]   Multiplicity of periodic solutions of semilinear Duffing's equation at resonance [J].
Wang, ZH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 237 (01) :166-187