Ni-based MOFs catalytic oxidative cleavage of lignin models and lignosulfonate under oxygen atmosphere

被引:21
作者
Zhou, Minghao [1 ]
Tang, Chengjun [1 ]
Xia, Haihong [2 ]
Li, Jing [2 ]
Liu, Junli [2 ]
Jiang, Jianchun [2 ]
Zhao, Jun [3 ]
Yang, Xiaohui [2 ]
Chen, Changzhou [2 ,3 ]
机构
[1] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou 225002, Jiangsu, Peoples R China
[2] Chinese Acad Forestry, Inst Chem Ind Forest Prod, Key Lab Biomass Energy & Mat, Nanjing 210042, Jiangsu, Peoples R China
[3] Hong Kong Baptist Univ, Inst Bioresource & Agr, Dept Biol, Kowloon Tong, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
Lignin; Oxidative depolymerization; Oxygen; Phenolics; Fuels; BOND-CLEAVAGE; DEPOLYMERIZATION; CHEMICALS; ACID; MONOMERS; LINKAGES; PHENOLS;
D O I
10.1016/j.fuel.2022.123993
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A strategy has now been created to immobilize non-noble metal particles on supports using metal-organic frameworks (MOFs) as precursors. Ni/C-X and other metal-based catalysts were synthesized using trimesic acid as ligand to transform lignin dimer and lignin to obtain high value-added fuels or chemicals (benzoic acid and phenol). Then, a mild Ni-based catalytic oxidation system under O-2 atmosphere was established. The introduction of Ni enhanced the strong acid sites of the spherical MOF catalyst, and the synergistic effect between the Ni and carbon support greatly improved the catalytic activity. Under optimal catalytic conditions, Ni/C-10 catalyst could break the beta-O-4 bond in lignin dimer under 160 degrees C for the production of benzoic acid and phenols. In addition, Ni/C-10 catalyst also showed excellent desulfurization ability in the oxidation depolymerization of lignosulfonate.
引用
收藏
页数:9
相关论文
共 35 条
[21]   Lignin Valorization: Improving Lignin Processing in the Biorefinery [J].
Ragauskas, Arthur J. ;
Beckham, Gregg T. ;
Biddy, Mary J. ;
Chandra, Richard ;
Chen, Fang ;
Davis, Mark F. ;
Davison, Brian H. ;
Dixon, Richard A. ;
Gilna, Paul ;
Keller, Martin ;
Langan, Paul ;
Naskar, Amit K. ;
Saddler, Jack N. ;
Tschaplinski, Timothy J. ;
Tuskan, Gerald A. ;
Wyman, Charles E. .
SCIENCE, 2014, 344 (6185) :709-+
[22]   Formic-acid-induced depolymerization of oxidized lignin to aromatics [J].
Rahimi, Alireza ;
Ulbrich, Arne ;
Coon, Joshua J. ;
Stahl, Shannon S. .
NATURE, 2014, 515 (7526) :249-252
[23]   Chemoselective Metal-Free Aerobic Alcohol Oxidation in Lignin [J].
Rahimi, Alireza ;
Azarpira, Ali ;
Kim, Hoon ;
Ralph, John ;
Stahl, Shannon S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (17) :6415-6418
[24]   Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids [J].
Ralph J. ;
Lundquist K. ;
Brunow G. ;
Lu F. ;
Kim H. ;
Schatz P.F. ;
Marita J.M. ;
Hatfield R.D. ;
Ralph S.A. ;
Christensen J.H. ;
Boerjan W. .
Phytochemistry Reviews, 2004, 3 (1-2) :29-60
[25]   A STRUCTURAL MODEL OF SOFTWOOD LIGNIN [J].
SAKAKIBARA, A .
WOOD SCIENCE AND TECHNOLOGY, 1980, 14 (02) :89-100
[26]   Controllable production of guaiacols and phenols from lignin depolymerization using Pd/C catalyst cooperated with metal chloride [J].
Shu, Riyang ;
Xu, Ying ;
Ma, Longlong ;
Zhang, Qi ;
Wang, Chao ;
Chen, Ying .
CHEMICAL ENGINEERING JOURNAL, 2018, 338 :457-464
[27]  
Su SH, 2021, GREEN CHEM, V23, P7235, DOI [10.1039/d1gc02131a, 10.1039/D1GC02131A]
[28]   Raney Ni as a Versatile Catalyst for Biomass Conversion [J].
Sun, Zhuohua ;
Zhang, Zhe-Hui ;
Yuan, Tong-Qi ;
Ren, Xiaohong ;
Rong, Zeming .
ACS CATALYSIS, 2021, 11 (16) :10508-10536
[29]   Selective hydrogenation of furfural for high-value chemicals: effect of catalysts and temperature [J].
Xia, Haihong ;
Chen, Changzhou ;
Liu, Peng ;
Zhou, Minghao ;
Jiang, Jianchun .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (11) :5709-5720
[30]   Lignin depolymerisation strategies: towards valuable chemicals and fuels [J].
Xu, Chunping ;
Arancon, Rick Arneil D. ;
Labidi, Jalel ;
Luque, Rafael .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (22) :7485-7500