Path Integral Treatment of a Dirac Particle in a Weak Gravitational Plane Wave

被引:0
作者
Zabat, Sana [1 ]
Chetouani, Lyazid [1 ]
机构
[1] Univ Mentouri, Fac Sci Exactes, Dept Phys, Constantine 25000, Algeria
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2010年 / 65卷 / 05期
关键词
Path Integral; Dirac Equation; Exact Solution; SPINNING PARTICLES; FIELD; QUANTIZATION;
D O I
10.1515/zna-2010-0508
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Green functions for Klein-Gordon and Dirac particles in a weak gravitational field are determined exactly by the path integral formalism. By using simple changes, it is shown that the classical trajectories play an important role in determining these Green functions.
引用
收藏
页码:431 / 444
页数:14
相关论文
共 50 条
[41]   Quasinormal modes of Dirac field in 2+1 dimensional gravitational wave background [J].
Dogan, Semra Gurtas ;
Sucu, Yusuf .
PHYSICS LETTERS B, 2019, 797
[42]   Path integral formalism for the Jaynes–Cummings model in the presence of a classical homogeneous gravitational field [J].
Hilal Benkhelil .
Indian Journal of Physics, 2023, 97 :255-262
[43]   Path Integral Action for a Resonant Detector of Gravitational Waves in the Generalized Uncertainty Principle Framework [J].
Sen, Soham ;
Bhattacharyya, Sukanta ;
Gangopadhyay, Sunandan .
UNIVERSE, 2022, 8 (09)
[44]   High-Frequency Directed Wave Propagators: A Path Integral Derivation [J].
Samelsohn, Gregory .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (11) :5637-5648
[45]   Path integral formalism for the Jaynes-Cummings model in the presence of a classical homogeneous gravitational field [J].
Benkhelil, H. .
INDIAN JOURNAL OF PHYSICS, 2023, 97 (01) :255-262
[46]   Exact spin coherent state path integral for a two-level atom in gravitational fields [J].
Aouachria, Mekki .
CANADIAN JOURNAL OF PHYSICS, 2011, 89 (11) :1141-1148
[47]   On the initial spin periods of magnetars born in weak supernova explosions and their gravitational wave radiation [J].
Yan, Yu-Long ;
Cheng, Quan ;
Zheng, Xiao-Ping ;
Ouyang, Xia-Xia .
EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (10)
[48]   Dynamic of the system in a periodic potential, submitted to an electromagnetic wave: Path integral approach [J].
Issofa, N. ;
Kuetche, C. P. F. ;
Ateuafack, M. E. ;
Fai, L. C. .
PHYSICA SCRIPTA, 2021, 96 (05)
[49]   Experimental study on the motion of a spherical particle in a plane traveling sound wave [J].
Wan, Dongmei ;
Xu, Haitao .
ACTA MECHANICA SINICA, 2022, 38 (08)
[50]   On Dirac-Coulomb problem in (2+1) dimensional space-time and path integral quantization [J].
Haouat, S. ;
Chetouani, L. .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (06)