Genetic variation in adaptability and pleiotropy in budding yeast

被引:47
|
作者
Jerison, Elizabeth R. [1 ,2 ,3 ]
Kryazhimskiy, Sergey [4 ]
Mitchel, James Kameron [2 ]
Bloom, Joshua S. [5 ]
Kruglyak, Leonid [5 ]
Desai, Michael M. [1 ,2 ,3 ]
机构
[1] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Harvard Univ, FAS Ctr Syst Biol, Cambridge, MA 02138 USA
[4] Univ Calif San Diego, Div Biol Sci, Sect Ecol Behav & Evolut, San Diego, CA 92103 USA
[5] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90024 USA
来源
ELIFE | 2017年 / 6卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
DIMINISHING-RETURNS EPISTASIS; HIGH MUTATION-RATES; BENEFICIAL MUTATIONS; HISTORICAL CONTINGENCY; MISSING HERITABILITY; SPEEDS ADAPTATION; KEY INNOVATION; RNA VIRUS; EVOLUTION; FITNESS;
D O I
10.7554/eLife.27167
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Evolution can favor organisms that are more adaptable, provided that genetic variation in adaptability exists. Here, we quantify this variation among 230 offspring of a cross between diverged yeast strains. We measure the adaptability of each offspring genotype, defined as its average rate of adaptation in a specific environmental condition, and analyze the heritability, predictability, and genetic basis of this trait. We find that initial genotype strongly affects adaptability and can alter the genetic basis of future evolution. Initial genotype also affects the pleiotropic consequences of adaptation for fitness in a different environment. This genetic variation in adaptability and pleiotropy is largely determined by initial fitness, according to a rule of declining adaptability with increasing initial fitness, but several individual QTLs also have a significant idiosyncratic role. Our results demonstrate that both adaptability and pleiotropy are complex traits, with extensive heritable differences arising from naturally occurring variation.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Genetic variation in pleiotropy
    Pavlicev, M.
    Kenney-Hunt, J. P.
    Norgard, E. A.
    Cheverud, J. M.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2006, 46 : E236 - E236
  • [2] Mapping Ethanol Tolerance in Budding Yeast Reveals High Genetic Variation in a Wild Isolate
    Haas, Roni
    Horev, Guy
    Lipkin, Ehud
    Kesten, Inbar
    Portnoy, Maya
    Buhnik-Rosenblau, Keren
    Soller, Morris
    Kashi, Yechezkel
    FRONTIERS IN GENETICS, 2019, 10
  • [3] ANTAGONISTIC PLEIOTROPY, DOMINANCE, AND GENETIC-VARIATION
    ROSE, MR
    HEREDITY, 1982, 48 (FEB) : 63 - 78
  • [4] CELL-CYCLE VARIATION IN BUDDING YEAST
    RIVIN, CJ
    FANGMAN, WL
    JOURNAL OF CELL BIOLOGY, 1977, 75 (02): : A12 - A12
  • [5] Genetic dissection of transcriptional regulation in budding yeast
    Brem, RB
    Yvert, G
    Clinton, R
    Kruglyak, L
    SCIENCE, 2002, 296 (5568) : 752 - 755
  • [6] Transcription as source of genetic heterogeneity in budding yeast
    Piguet, Baptiste
    Houseley, Jonathan
    YEAST, 2024, 41 (04) : 171 - 185
  • [7] The Cellular Robustness by Genetic Redundancy in Budding Yeast
    Li, Jingjing
    Yuan, Zineng
    Zhang, Zhaolei
    PLOS GENETICS, 2010, 6 (11):
  • [8] The Genetic Requirements for Pentose Fermentation in Budding Yeast
    Mittelman, Karin
    Barkai, Naama
    G3-GENES GENOMES GENETICS, 2017, 7 (06): : 1743 - 1752
  • [9] Coevolution Trumps Pleiotropy: Carbon Assimilation Traits Are Independent of Metabolic Network Structure in Budding Yeast
    Opulente, Dana A.
    Morales, Christopher M.
    Carey, Lucas B.
    Rest, Joshua S.
    PLOS ONE, 2013, 8 (01):
  • [10] Exploiting budding yeast natural variation for industrial processes
    Cubillos, Francisco A.
    CURRENT GENETICS, 2016, 62 (04) : 745 - 751