Coupling Darcy and Stokes equations for porous media with cracks

被引:43
作者
Bernardi, C
Hecht, F
Pironneau, O
机构
[1] CNRS, Lab Jacques Louis Lions, F-75252 Paris, France
[2] Univ Paris 06, F-75252 Paris, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2005年 / 39卷 / 01期
关键词
Darcy and Stokes equations; finite elements; error estimates;
D O I
10.1051/m2an:2005007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In order to handle the flow of a viscous incompressible fluid in a porous medium with cracks, the thickness of which cannot be neglected, we consider a model which couples the Darcy equations in the medium with the Stokes equations in the cracks by a new boundary condition at the interface, namely the continuity of the pressure. We prove that this model admits a unique solution and propose a mixed formulation of it. Relying on this formulation, we describe a finite element discretization and derive a priori and a posteriori error estimates. We present some numerical experiments that are in good agreement with the analysis.
引用
收藏
页码:7 / 35
页数:29
相关论文
共 30 条
[1]   A priori and a posteriori analysis of finite volume discretizations of Darcy's equations [J].
Achdou, Y ;
Bernardi, C ;
Coquel, F .
NUMERISCHE MATHEMATIK, 2003, 96 (01) :17-42
[2]  
Amara M., 2004, Computing and Visualization in Science, V6, P47, DOI 10.1007/s00791-003-0107-y
[3]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[4]  
2-B
[5]  
[Anonymous], FREEFEM
[6]  
[Anonymous], RAIRO R
[7]  
BARTOLUZZA S, 2001, ESAIM-MATH MODEL NUM, V35, P647
[8]  
Begue C., 1988, NONLINEAR PARTIAL DI, VIX, P179
[9]  
BERNARDI C, 1986, CR ACAD SCI I-MATH, V303, P971
[10]   GENERALIZED INF-SUP CONDITIONS FOR TSCHEBYSCHEFF SPECTRAL APPROXIMATION OF THE STOKES PROBLEM [J].
BERNARDI, C ;
CANUTO, C ;
MADAY, Y .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (06) :1237-1271