Temperature-compensated fiber-Bragg-grating-based magnetostrictive sensor for dc and ac currents

被引:43
作者
Chiang, KS
Kancheti, R
Rastogi, V
机构
[1] City Univ Hong Kong, Optoelect Res Ctr, Kowloon, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
关键词
optical fiber sensors; current sensors; magnetostrictive sensors; fiber Bragg gratings; temperature compensation;
D O I
10.1117/1.1576533
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A compact and inexpensive optical fiber sensor for the measurement of dc and ac currents is demonstrated. The sensor consists of a fiber Bragg grating bonded on two joined pieces of metal alloys, one being Terfenol-D and the other MONEL 400. Because Terfenol-D has much stronger magnetostriction, a magnetic field applied along the two alloy bars stretches the two portions of the grating in different proportions and, thus, results in a split in the reflection spectrum of the grating, which can be measured with a simple technique using a single photodetector. On the other hand, because Terfenol-D and MONEL 400 have almost identical thermal expansion coefficients, a change in temperature does not cause the reflected spectrum of the grating to split and, therefore, affect the magnetic field measurement. (C) 2003 society of PhotoOptical Instrumentation Engineers.
引用
收藏
页码:1906 / 1909
页数:4
相关论文
共 50 条
  • [21] A fiber Bragg grating current sensor with temperature compensation
    Tian F.-F.
    Cong J.-W.
    Yun B.-F.
    Cui Y.-P.
    Optoelectronics Letters, 2009, 5 (05) : 347 - 351
  • [22] A Novel Fiber Bragg Grating Sensor with Temperature Compensation
    Lin, Yuchi
    Wang, Wei
    2009 SYMPOSIUM ON PHOTONICS AND OPTOELECTRONICS (SOPO 2009), 2009, : 432 - 434
  • [23] Temperature insensitivity of a fiber optic Bragg grating sensor
    Henriksson, A
    Sandgren, S
    Asseh, A
    FIBER OPTIC AND LASER SENSORS XIV, 1996, 2839 : 20 - 33
  • [24] Temperature-Compensated Highly Sensitive Reflective SPR Fiber Sensor Based on Tapered Seven-Core Fiber
    Wu, Mengyuan
    Zhou, Jing
    Wang, Haoran
    Zheng, Shichen
    Xie, Tongtong
    Fu, Hongyan
    Chen, Nan
    Bu, Yikun
    IEEE SENSORS JOURNAL, 2024, 24 (09) : 14328 - 14334
  • [25] Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm
    Liang, Minfu
    Fang, Xinqiu
    Ning, Yaosheng
    PHOTONIC SENSORS, 2018, 8 (02) : 157 - 167
  • [26] Temperature-Compensated Interferometric High-Temperature Pressure Sensor Using a Pure Silica Microstructured Optical Fiber
    Reja, Mohammad Istiaque
    Nguyen, Linh, V
    Peng, Lu
    Ebendorff-Heidepriem, Heike
    Warren-Smith, Stephen C.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [27] Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm
    Minfu Liang
    Xinqiu Fang
    Yaosheng Ning
    Photonic Sensors, 2018, 8 : 157 - 167
  • [28] Temperature compensation of optical fiber Bragg grating pressure sensor
    Hsu, YS
    Wang, LK
    Liu, WF
    Chiang, YJ
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (5-8) : 874 - 876
  • [29] Experimental study of a multimode fiber Bragg grating temperature sensor
    Barbosa, CL
    Cazo, RM
    Hattori, HT
    Rabelo, RC
    Lisbôa, O
    IMOC 2001: PROCEEDINGS OF THE 2001 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE: THE CHALLENGE OF THE NEW MILLENIUM: TECHNOLOGICAL DEVELOPMENT WITH ENVIRONMENTAL CONSCIOUSNESS, 2001, : 317 - 319
  • [30] Temperature-compensated optical fiber sensor for urea detection based on the femtosecond laser-inscribed process
    Gong, Pengqi
    Li, Xuegang
    Zhou, Xue
    Wang, Fang
    Zhang, Yanan
    Zhao, Yong
    SENSORS AND ACTUATORS B-CHEMICAL, 2025, 423