Self-organizing map estimator for the crop water stress index

被引:11
|
作者
Kumar, Navsal [1 ]
Rustum, Rabee [2 ]
Shankar, Vijay [3 ]
Adeloye, Adebayo J. [4 ]
机构
[1] Shoolini Univ, Fac Engn & Technol, Dept Civil Engn, Solan 173229, Himachal Prades, India
[2] Heriot Watt Univ, Sch Energy Geosci Infrastruct & Soc, Dubai Campus, Dubai 294345, U Arab Emirates
[3] Natl Inst Technol Hamirpur, Dept Civil Engn, Hamirpur 177005, Himachal Prades, India
[4] Heriot Watt Univ, Sch Energy Geosci Infrastruct & Soc, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
Unsupervised learning; Indian mustard; Neural network; Self-organizing map; Crop Water Stress Index; CANOPY TEMPERATURE; IRRIGATION MANAGEMENT; WINE GRAPE; SOM; RAINFALL; PREDICT;
D O I
10.1016/j.compag.2021.106232
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Crop water stress index (CWSI) is a reliable, economic and non-destructive method of monitoring the onset of water stress for irrigation scheduling purposes. Its application, however, is limited due to the need of obtaining the baseline canopy temperatures. This study developed a self-organizing map (SOM) based model to predict the CWSI using microclimatic variables, namely air temperature, canopy temperature and relative humidity. The canopy temperature measurements were made from Indian mustard crop grown in a humid sub-tropical agroclimate during the 2017 and 2018 cropping seasons. Eight levels of irrigation treatments (I1 - I8) based on maximum allowable depletion of available soil water were considered in the study. The CWSI for treatments I2 - I7 was computed using the empirical approach based on the experimentally measured baseline canopy temperatures from treatments I1 and I8. The number of data points used was 1260 and 1350 for model training and testing, respectively. The developed SOM model was evaluated using the error indices Nash-Sutcliffe efficiency (NSE), bias error (BE), absolute error (AE), and coefficient of determination (R2). The SOM predicted CWSI presented a good agreement with the baseline computed CWSI values during model training (R2 = 0.98, NSE = 0.97, AE = 0.018, BE = 0.0004) and testing (R2 = 0.98, NSE = 0.98, AE = 0.018, BE = 0.002). Treatment specific analysis was conducted to evaluate the performance of SOM predicted CWSI for different irrigation levels. Results indicated that the presence of zero CWSI values in a significant proportion in the dataset impacted the model prediction performance at low CWSI (<0.1) values, with an R2 of 0.71 during testing. Nonetheless, the model performed exceptionally well in predicting CWSI values between 0.1 and 0.6 (R2 = 0.93-0.98, NSE = 0.92-0.98, AE = 0.013-0.015, BE = - 0.002-0.004), which is the commonly observed CWSI range for irrigation scheduling in field crops. For better understanding, the developed SOM model was also analysed through the component planes, U-matrix, clusters and high-low bar planes in the cluster features.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] The self-organizing map of trees
    Peura, M
    NEURAL PROCESSING LETTERS, 1998, 8 (02) : 155 - 162
  • [22] PARALLEL SELF-ORGANIZING MAP
    Li Weigang Department of Computer Science CIC
    Transactions of Nonferrous Metals Society of China, 1999, (01) : 174 - 182
  • [23] A Pareto Self-Organizing Map
    Hunter, A
    Kennedy, RL
    ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 987 - 992
  • [24] The diffuse self-organizing map
    Wang, Y
    Zeng, CH
    Mei, T
    Liu, WQ
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 3530 - 3535
  • [25] The Self-Organizing Map of Trees
    Markus Peura
    Neural Processing Letters, 1998, 8 : 155 - 162
  • [26] A Riemannian Self-Organizing Map
    Yu, Dongjun
    Hancock, Edwin R.
    Smith, William A. P.
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2009, PROCEEDINGS, 2009, 5716 : 229 - +
  • [27] Self-organizing map initialization
    Attik, M
    Bougrain, L
    Alexandre, R
    ARTIFICIAL NEURAL NETWORKS: BIOLOGICAL INSPIRATIONS - ICANN 2005, PT 1, PROCEEDINGS, 2005, 3696 : 357 - 362
  • [28] FUZZY SELF-ORGANIZING MAP
    VUORIMAA, P
    FUZZY SETS AND SYSTEMS, 1994, 66 (02) : 223 - 231
  • [29] Parallel self-organizing map
    Li, WG
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 1999, 9 (01) : 172 - 180
  • [30] Evolutionary Self-Organizing Map
    Chang, MG
    Yu, HJ
    Heh, JS
    IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 680 - 685