Synthesis of Carbon Nitride Semiconductors in Sulfur Flux for Water Photoredox Catalysis

被引:415
作者
Zhang, Jinshui [1 ]
Zhang, Mingwen [1 ]
Zhang, Guigang [1 ]
Wang, Xinchen [1 ]
机构
[1] Fuzhou Univ, Res Inst Photocatalysis, Fujian Prov Key Lab Photocatalysis, State Key Lab Breeding Base, Fuzhou 350002, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon nitride; elemental sulfur; sulfur-mediated synthesis; solar energy conversion; photocatalysis; VISIBLE-LIGHT-DRIVEN; PHOTOCATALYTIC ACTIVITY; ELECTRONIC-STRUCTURE; HYDROGEN-PRODUCTION; ELEMENTAL SULFUR; RENEWABLE ENERGY; OXIDATION; EVOLUTION; NANOCOMPOSITE; PERFORMANCE;
D O I
10.1021/cs300167b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sulfur-mediated synthesis has been demonstrated as a simple but efficient pathway to control the texture and electronic structure of poly(tris-triazine) based graphitic carbon nitride semiconductors with improved photocatalytic reactivity over the pristine counterpart. Here, we advance this strategy by employing cheap and easily available elemental sulfur as the external sulfur species instead of sulfur-containing precursors for the sulfur-mediated synthesis of polymeric carbon nitride photocatalysts. Characterization results revealed that the multiple thermal condensations of carbon nitride precursors in the hot sulfur flux provided a facile means to promote the formation of graphitic-like carbon nitride conjugated systems, altering the traditional route of thermal-induced self-polymerization of melamine. The textural, electronic, and optical properties of the resultants organic semiconductors was therefore strongly modified to endow the materials with improved physical and chemical properties, as demonstrated by the enhanced photocatalytic activity for water reduction and oxidation under visible light irradiation with wavelength >420 nm. This result again underlines the benefit of a sulfur-mediated approach to construct and manipulate polymeric carbon nitride networks for sustainable applications in catalysis and photocatalysis.
引用
收藏
页码:940 / 948
页数:9
相关论文
共 73 条
[1]   Sol-gel synthesis of a novel melon-SiO2 nanocomposite with photocatalytic activity [J].
Ang, Thiam Peng .
CATALYSIS COMMUNICATIONS, 2009, 10 (14) :1920-1924
[2]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[3]   The viscosity of sulfur [J].
Bacon, RF ;
Fanelli, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1943, 65 :639-648
[4]   Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride [J].
Bojdys, Michael J. ;
Mueller, Jens-Oliver ;
Antonietti, Markus ;
Thomas, Arne .
CHEMISTRY-A EUROPEAN JOURNAL, 2008, 14 (27) :8177-8182
[5]   Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J].
Chen, Xiaobo ;
Liu, Lei ;
Yu, Peter Y. ;
Mao, Samuel S. .
SCIENCE, 2011, 331 (6018) :746-750
[6]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[7]   The effect of postnitridation annealing on the surface property and photocatalytic performance of N-doped TiO2 under visible light irradiation [J].
Chen, Xiufang ;
Wang, Xinchen ;
Hou, Yidong ;
Huang, Jianhui ;
Wu, Ling ;
Fu, Xianzhi .
JOURNAL OF CATALYSIS, 2008, 255 (01) :59-67
[8]   Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride: A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution with Visible Light [J].
Chen, Xiufang ;
Jun, Young-Si ;
Takanabe, Kazuhiro ;
Maeda, Kazuhiko ;
Domen, Kazunari ;
Fu, Xianzhi ;
Antonietti, Markus ;
Wang, Xinchen .
CHEMISTRY OF MATERIALS, 2009, 21 (18) :4093-4095
[9]   Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light [J].
Chen, Xiufang ;
Zhang, Jinshui ;
Fu, Xianzhi ;
Antonietti, Markus ;
Wang, Xinchen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (33) :11658-+
[10]   H2-O2 atmosphere increases the activity of Pt/TiO2 for benzene photocatalytic oxidation by two orders of magnitude [J].
Chen, YL ;
Li, DZ ;
Wang, XC ;
Wang, XX ;
Fu, XZ .
CHEMICAL COMMUNICATIONS, 2004, (20) :2304-2305