Molecular insight into CO2/N2 separation using a 2D-COF supported ionic liquid membrane

被引:11
作者
Zhang, Kuiyuan [1 ]
Zhou, Lixia [2 ]
Wang, Zichang [1 ]
Li, Haiyang [1 ]
Yan, Youguo [1 ]
Zhang, Jun [1 ]
机构
[1] China Univ Petr East China, Sch Mat Sci & Engn, Qingdao 266000, Peoples R China
[2] China Univ Petr, Coll Sci, Qingdao 266000, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE CAPTURE; CO2; CAPTURE; GAS SEPARATION; GRAPHENE; SOLUBILITY; TRANSPORT; FUTURE; FIELD;
D O I
10.1039/d2cp03044f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The covalent organic framework (COF) shows great potential for use in gas separation because of its uniform and high-density sub-nanometer sized pores. However, most of the COF pore sizes are large, and there are mismatches with the gas pairs (3-6 angstrom), and the steric hindrance cannot work in gas selectivity. In this work, one type of COF (NUS-2) supported ionic liquid membrane (COF-SILM) was prepared for use in CO2/N-2 separation. The separation performance was investigated using molecular dynamics simulation. There was an ultrahigh CO2 permeability up to 2.317 x 10(6) GPU, and a better CO2 selectivity was obtained when compared to that of N-2. The physical mechanism of ultrahigh permeability and CO2 selectivity are discussed in detail. The ultrathin membrane, high-density pores and high transmembrane driving force are responsible for the ultrahigh permeability of CO2. The different adsorption capabilities of ionic liquid (IL) for CO2 and N-2, as well as a gating effect, which allows CO2 passage and inhibits N-2 passage, contribute to the better CO2 selectivity over N-2. Moreover, the effects of the COF layer number and IL thickness on gas separation performance are also discussed. This work provides a molecular level understanding of the gas separation mechanism of COF-SILM, and the simulation results show one potential outstanding CO2 separation membrane for future applications.
引用
收藏
页码:23690 / 23698
页数:9
相关论文
共 54 条
[1]  
Anthony JL, 2005, J PHYS CHEM B, V109, P6366, DOI [10.1021/jp046404l, 10.1021/jp0464041]
[2]   Membrane Gas Separation: A Review/State of the Art [J].
Bernardo, P. ;
Drioli, E. ;
Golemme, G. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (10) :4638-4663
[3]   Ionic Liquids for CO2 Capture and Emission Reduction [J].
Brennecke, Joan E. ;
Gurkan, Burcu E. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (24) :3459-3464
[4]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[5]   Metal-organic framework membranes on the inner-side of a polymeric hollow fiber by microfluidic synthesis [J].
Cacho-Bailo, Fernando ;
Catalan-Aguirre, Silvia ;
Etxeberria-Benavides, Miren ;
Karvan, Oguz ;
Sebastian, Victor ;
Tellez, Carlos ;
Coronas, Joaquin .
JOURNAL OF MEMBRANE SCIENCE, 2015, 476 :277-285
[6]   PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation [J].
Car, Anja. ;
Stropnik, Chrtomir ;
Yave, Wilfredo ;
Peinemann, Klaus-V. .
JOURNAL OF MEMBRANE SCIENCE, 2008, 307 (01) :88-95
[7]   CO2-philic WS2 laminated membranes with a nanoconfined ionic liquid [J].
Chen, Danke ;
Wang, Wensen ;
Ying, Wen ;
Guo, Yi ;
Meng, Donghui ;
Yan, Youguo ;
Yan, Rongxin ;
Peng, Xinsheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (34) :16566-16573
[8]   Photothermal-Responsive Microporous Nanosheets Confined Ionic Liquid for Efficient CO2Separation [J].
Deng, Zheng ;
Wan, Ting ;
Chen, Danke ;
Ying, Wen ;
Zeng, Yu-Jia ;
Yan, Youguo ;
Peng, Xinsheng .
SMALL, 2020, 16 (34)
[9]   Limiting fossil fuel production as the next big step in climate policy [J].
Erickson, Peter ;
Lazarus, Michael ;
Piggot, Georgia .
NATURE CLIMATE CHANGE, 2018, 8 (12) :1037-1043
[10]   Industrial carbon dioxide capture and utilization: state of the art and future challenges [J].
Gao, Wanlin ;
Liang, Shuyu ;
Wang, Rujie ;
Jiang, Qian ;
Zhang, Yu ;
Zheng, Qianwen ;
Xie, Bingqiao ;
Toe, Cui Ying ;
Zhu, Xuancan ;
Wang, Junya ;
Huang, Liang ;
Gao, Yanshan ;
Wang, Zheng ;
Jo, Changbum ;
Wang, Qiang ;
Wang, Lidong ;
Liu, Yuefeng ;
Louis, Benoit ;
Scott, Jason ;
Roger, Anne-Cecile ;
Amal, Rose ;
Heh, Hong ;
Park, Sang-Eon .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (23) :8584-8686