Molecular insight into CO2/N2 separation using a 2D-COF supported ionic liquid membrane

被引:10
作者
Zhang, Kuiyuan [1 ]
Zhou, Lixia [2 ]
Wang, Zichang [1 ]
Li, Haiyang [1 ]
Yan, Youguo [1 ]
Zhang, Jun [1 ]
机构
[1] China Univ Petr East China, Sch Mat Sci & Engn, Qingdao 266000, Peoples R China
[2] China Univ Petr, Coll Sci, Qingdao 266000, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE CAPTURE; CO2; CAPTURE; GAS SEPARATION; GRAPHENE; SOLUBILITY; TRANSPORT; FUTURE; FIELD;
D O I
10.1039/d2cp03044f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The covalent organic framework (COF) shows great potential for use in gas separation because of its uniform and high-density sub-nanometer sized pores. However, most of the COF pore sizes are large, and there are mismatches with the gas pairs (3-6 angstrom), and the steric hindrance cannot work in gas selectivity. In this work, one type of COF (NUS-2) supported ionic liquid membrane (COF-SILM) was prepared for use in CO2/N-2 separation. The separation performance was investigated using molecular dynamics simulation. There was an ultrahigh CO2 permeability up to 2.317 x 10(6) GPU, and a better CO2 selectivity was obtained when compared to that of N-2. The physical mechanism of ultrahigh permeability and CO2 selectivity are discussed in detail. The ultrathin membrane, high-density pores and high transmembrane driving force are responsible for the ultrahigh permeability of CO2. The different adsorption capabilities of ionic liquid (IL) for CO2 and N-2, as well as a gating effect, which allows CO2 passage and inhibits N-2 passage, contribute to the better CO2 selectivity over N-2. Moreover, the effects of the COF layer number and IL thickness on gas separation performance are also discussed. This work provides a molecular level understanding of the gas separation mechanism of COF-SILM, and the simulation results show one potential outstanding CO2 separation membrane for future applications.
引用
收藏
页码:23690 / 23698
页数:9
相关论文
共 54 条
  • [1] Anthony JL, 2005, J PHYS CHEM B, V109, P6366, DOI 10.1021/jp0464041
  • [2] Membrane Gas Separation: A Review/State of the Art
    Bernardo, P.
    Drioli, E.
    Golemme, G.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (10) : 4638 - 4663
  • [3] Ionic Liquids for CO2 Capture and Emission Reduction
    Brennecke, Joan E.
    Gurkan, Burcu E.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (24): : 3459 - 3464
  • [4] Impermeable atomic membranes from graphene sheets
    Bunch, J. Scott
    Verbridge, Scott S.
    Alden, Jonathan S.
    van der Zande, Arend M.
    Parpia, Jeevak M.
    Craighead, Harold G.
    McEuen, Paul L.
    [J]. NANO LETTERS, 2008, 8 (08) : 2458 - 2462
  • [5] Metal-organic framework membranes on the inner-side of a polymeric hollow fiber by microfluidic synthesis
    Cacho-Bailo, Fernando
    Catalan-Aguirre, Silvia
    Etxeberria-Benavides, Miren
    Karvan, Oguz
    Sebastian, Victor
    Tellez, Carlos
    Coronas, Joaquin
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2015, 476 : 277 - 285
  • [6] PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation
    Car, Anja.
    Stropnik, Chrtomir
    Yave, Wilfredo
    Peinemann, Klaus-V.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2008, 307 (01) : 88 - 95
  • [7] CO2-philic WS2 laminated membranes with a nanoconfined ionic liquid
    Chen, Danke
    Wang, Wensen
    Ying, Wen
    Guo, Yi
    Meng, Donghui
    Yan, Youguo
    Yan, Rongxin
    Peng, Xinsheng
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (34) : 16566 - 16573
  • [8] Photothermal-Responsive Microporous Nanosheets Confined Ionic Liquid for Efficient CO2Separation
    Deng, Zheng
    Wan, Ting
    Chen, Danke
    Ying, Wen
    Zeng, Yu-Jia
    Yan, Youguo
    Peng, Xinsheng
    [J]. SMALL, 2020, 16 (34)
  • [9] Limiting fossil fuel production as the next big step in climate policy
    Erickson, Peter
    Lazarus, Michael
    Piggot, Georgia
    [J]. NATURE CLIMATE CHANGE, 2018, 8 (12) : 1037 - 1043
  • [10] Industrial carbon dioxide capture and utilization: state of the art and future challenges
    Gao, Wanlin
    Liang, Shuyu
    Wang, Rujie
    Jiang, Qian
    Zhang, Yu
    Zheng, Qianwen
    Xie, Bingqiao
    Toe, Cui Ying
    Zhu, Xuancan
    Wang, Junya
    Huang, Liang
    Gao, Yanshan
    Wang, Zheng
    Jo, Changbum
    Wang, Qiang
    Wang, Lidong
    Liu, Yuefeng
    Louis, Benoit
    Scott, Jason
    Roger, Anne-Cecile
    Amal, Rose
    Heh, Hong
    Park, Sang-Eon
    [J]. CHEMICAL SOCIETY REVIEWS, 2020, 49 (23) : 8584 - 8686