BREAST TUMOR IMAGE CLASSIFICATION IN BRIGHT CHALLENGE VIA MULTIPLE INSTANCE LEARNING AND DEEP TRANSFORMERS

被引:1
作者
Zhan, Yangen [1 ]
Bian, Hao [1 ]
Chen, Yang [1 ]
Li, Xiu [1 ]
Zhang, Yongbing [2 ]
机构
[1] Tsinghua Shenzhen Int Grad Sch, Shenzhen, Peoples R China
[2] Harbin Inst Technol Shenzhen, Shenzhen, Peoples R China
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING CHALLENGES (IEEE ISBI 2022) | 2022年
关键词
Multiple instance learning; Transformer; transfer learning; BRIGHT Challenge; image classification;
D O I
10.1109/ISBIC56247.2022.9854733
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Artificial intelligence models have become increasingly promising in automated computed-aided cancer diagnostics. In this paper, a new deep learning method is proposed for solving breast tumor image classification in the BRIGHT Challenge. Given two types of data, regions of interest (ROIs) and whole slide images (WSIs), the proposed method first utilize ROI data to train a model that is able to select important image patches in WSI data and simultaneously capture a low-dimensional representation for image patches. With features extracted from important image patches in each WSI, another deep learning model following the Transformer framework is trained to perform the final WSI-level tumor classification, in which transfer learning is also employed to fully exploit ROI data. Evaluated on the test dataset, the proposed method achieves the 4th best results in the challenge. Ablation experiments are also carried out to analyze the proposed method in detail.
引用
收藏
页数:5
相关论文
共 17 条
  • [1] Understanding diagnostic variability in breast pathology: lessons learned from an expert consensus review panel
    Allison, Kimberly H.
    Reisch, Lisa M.
    Carney, Patricia A.
    Weaver, Donald L.
    Schnitt, Stuart J.
    O'Malley, Frances P.
    Geller, Berta M.
    Elmore, Joann G.
    [J]. HISTOPATHOLOGY, 2014, 65 (02) : 240 - 251
  • [2] Bahdanau D., 2015, ICLP
  • [3] Brancati N, 2021, Arxiv, DOI arXiv:2111.04740
  • [4] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
    Campanella, Gabriele
    Hanna, Matthew G.
    Geneslaw, Luke
    Miraflor, Allen
    Silva, Vitor Werneck Krauss
    Busam, Klaus J.
    Brogi, Edi
    Reuter, Victor E.
    Klimstra, David S.
    Fuchs, Thomas J.
    [J]. NATURE MEDICINE, 2019, 25 (08) : 1301 - +
  • [5] Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, DOI 10.48550/ARXIV.2010.11929]
  • [6] Elmore JG, 2015, JAMA-J AM MED ASSOC, V313, P1122, DOI 10.1001/jama.2015.1405
  • [7] Han K., 2021, ARXIV
  • [8] Multi-scale Domain-adversarial Multiple-instance CNN for Cancer Subtype Classification with Unannotated Histopathological Images
    Hashimoto, Noriaki
    Fukushima, Daisuke
    Koga, Ryoichi
    Takagi, Yusuke
    Ko, Kaho
    Kohno, Kei
    Nakaguro, Masato
    Nakamura, Shigeo
    Hontani, Hidekata
    Takeuchi, Ichiro
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3851 - 3860
  • [9] Histology image analysis for carcinoma detection and grading
    He, Lei
    Long, L. Rodney
    Antani, Sameer
    Thoma, George R.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 107 (03) : 538 - 556
  • [10] Lerousseau Marvin, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12265), P470, DOI 10.1007/978-3-030-59722-1_45