An unsupervised multiresolution textured image segmentation using wavelet-domain classification

被引:0
作者
Ye, Z [1 ]
Lu, CC [1 ]
机构
[1] Kent State Univ, Dept Math & Comp Sci, Kent, OH 44242 USA
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS AND TECHNOLOGY, VOLS I AND II | 2001年
关键词
image segmentation; wavelets; Hidden Markov Model; interscale fusion;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The wavelet-domain Hidden Markov Tree (HMT) is a statistic model very suitable for textured images and is used to supervise segmentation successfully. Based on this model, an unsupervised multiresolution segmentation algorithm in Wavelet-Domain is proposed. We use a Gaussian mixture model to characterize wavelet coefficients at each scale and each subband. We also use the Markov Random Field (MRF) to model the class label of each wavelet coefficient. The Expectation Maximization (EM) algorithm is used to estimate the parameters of this model directly from images. Ultimately the multiresolution classifications are fused by the Hybrid Contextual Labeling Tree (HCLT) to obtain a reliable and accurate segmentation.
引用
收藏
页码:287 / 293
页数:7
相关论文
共 9 条
[1]   A MULTISCALE RANDOM-FIELD MODEL FOR BAYESIAN IMAGE SEGMENTATION [J].
BOUMAN, CA ;
SHAPIRO, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1994, 3 (02) :162-177
[2]  
CHOI H, 1998, P 32 AS C NOV
[3]  
CHOI H, 2000, P IST SPIES 12 ANN I
[4]  
CHOI H, 1999, P SPIE TECHN C MATH
[5]  
Crouse M., 1998, IEEE T SIGNAL PROCES
[6]  
FAN G, 2000, P IEEE INT C IM PROC
[7]  
LAFERTE JM, 1996, INT C ICPR 96 VIENN
[8]  
Noda H, 1999, IEICE T INF SYST, VE82D, P1605
[9]  
VENKATACHALAM V, 2000, P SPIE 14 ANN INT S