Enhanced production of strange baryons in high-energy nuclear collisions from a multiphase transport model

被引:16
|
作者
Shao, Tianhao [1 ,2 ,3 ]
Chen, Jinhui [1 ]
Ko, Che Ming [4 ,5 ]
Lin, Zi-Wei [6 ]
机构
[1] Fudan Univ, Inst Modern Phys, Key Lab Nucl Phys & Ion Beam Applicat MOE, Shanghai 200433, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Texas A&M Univ, Cyclotron Inst, College Stn, TX 77843 USA
[5] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[6] East Carolina Univ, Dept Phys, Greenville, NC 27858 USA
基金
中国国家自然科学基金;
关键词
P-PB COLLISIONS; MATTER; DEPENDENCE; MULTIPLICITY; PERSPECTIVE; PROTON;
D O I
10.1103/PhysRevC.102.014906
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We introduce additional coalescence factors for the production of strange baryons in a multiphase transport (AMPT) model in order to describe the enhanced production of multistrange hadrons observed in Pb + Pb collisions at root s(NN) = 2 . 76 TeV at the Large Hadron Collider (LHC) and Au + Au collisions at root s(NN) = 200 GeV at Relativistic Heavy-Ion Collider (RHIC). This extended AMPT model is found to also give a reasonable description of the multiplicity dependence of the strangeness enhancement observed in high multiplicity events in pp collisions at root s = 7 TeV and p-Pb collisions at root s(NN) = 5.02 TeV. We find that the coalescence factors depend on the system size but not much on whether the system is produced from A + A or p + A collisions. The extended AMPT model thus provides a convenient way to model the mechanism underlying the observed strangeness enhancement in collisions of both small and large systems at RHIC and LHC energies.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions
    Adam, J.
    Adamova, D.
    Aggarwal, M. M.
    Rinella, G. Aglieri
    Agnello, M.
    Agrawal, N.
    Ahammed, Z.
    Ahmad, S.
    Ahn, S. U.
    Aiola, S.
    Akindinov, A.
    Alam, S. N.
    Albuquerque, D. S. D.
    Aleksandrov, D.
    Alessandro, B.
    Alexandre, D.
    Molina, R. Alfaro
    Alici, A.
    Alkin, A.
    Alme, J.
    Alt, T.
    Altinpinar, S.
    Altsybeev, I.
    Garcia Prado, C. Alves
    An, M.
    Andrei, C.
    Andrews, H. A.
    Andronic, A.
    Anguelov, V.
    Anticic, T.
    Antinori, F.
    Antonioli, P.
    Aphecetche, L.
    Appelshaeuser, H.
    Arcelli, S.
    Arnaldi, R.
    Arnold, O. W.
    Arsene, I. C.
    Arslandok, M.
    Audurier, B.
    Augustinus, A.
    Averbeck, R.
    Azmi, M. D.
    Badala, A.
    Baek, Y. W.
    Bagnasco, S.
    Bailhache, R.
    Bala, R.
    Balasubramanian, S.
    Baldisseri, A.
    NATURE PHYSICS, 2017, 13 (06) : 535 - 539
  • [22] Long range rapidity correlations and jet production in high energy nuclear collisions
    Abelev, B. I.
    Aggarwal, M. M.
    Ahammed, Z.
    Alakhverdyants, A. V.
    Anderson, B. D.
    Arkhipkin, D.
    Averichev, G. S.
    Balewski, J.
    Barannikova, O.
    Barnby, L. S.
    Baudot, J.
    Baumgart, S.
    Beavis, D. R.
    Bellwied, R.
    Benedosso, F.
    Betancourt, M. J.
    Betts, R. R.
    Bhasin, A.
    Bhati, A. K.
    Bichsel, H.
    Bielcik, J.
    Bielcikova, J.
    Biritz, B.
    Bland, L. C.
    Bnzarov, I.
    Bombara, M.
    Bonner, B. E.
    Bouchet, J.
    Braidot, E.
    Brandin, A. V.
    Bruna, E.
    Bueltmann, S.
    Burton, T. P.
    Bystersky, M.
    Cai, X. Z.
    Caines, H.
    Sanchez, M. Calderon de la Barca
    Catu, O.
    Cebra, D.
    Cendejas, R.
    Cervantes, M. C.
    Chajecki, Z.
    Chaloupka, P.
    Chattopadhyay, S.
    Chen, H. F.
    Chen, J. H.
    Chen, J. Y.
    Cheng, J.
    Cherney, M.
    Chikanian, A.
    PHYSICAL REVIEW C, 2009, 80 (06):
  • [23] Directed flow of A in high-energy heavy-ion collisions and A potential in dense nuclear matter
    Nara, Yasushi
    Jinno, Asanosuke
    Murase, Koichi
    Ohnishi, Akira
    PHYSICAL REVIEW C, 2022, 106 (04)
  • [24] Constraining the particle production mechanism in Au plus Au collisions at√SNN=7.7, 27, and 200 GeV using a multiphase transport model
    Nandi, Abhirikshma
    Kumar, Lokesh
    Sharma, Natasha
    PHYSICAL REVIEW C, 2020, 102 (02)
  • [25] Specific heat and its high-order moments in relativistic heavy-ion collisions from a multiphase transport model
    Cao, Ru-Xin
    Zhang, Song
    Ma, Yu-Gang
    PHYSICAL REVIEW C, 2022, 106 (01)
  • [26] Thermal Freeze-Out Parameters and Pseudoentropy from Charged Hadron Spectra in High-Energy Collisions
    Zhang, Xu-Hong
    Gao, Ya-Qin
    Liu, Fu-Hu
    Olimov, Khusniddin K.
    ADVANCES IN HIGH ENERGY PHYSICS, 2022, 2022
  • [27] Unified description of transverse momentum spectrums contributed by soft and hard processes in high-energy nuclear collisions
    Liu, Fu-Hu
    Gao, Ya-Qin
    Tian, Tian
    Li, Bao-Chun
    EUROPEAN PHYSICAL JOURNAL A, 2014, 50 (06) : 1 - 9
  • [28] Y production as a probe for early state dynamics in high energy nuclear collisions at RHIC
    Liu, Yunpeng
    Chen, Baoyi
    Xu, Nu
    Zhuang, Pengfei
    PHYSICS LETTERS B, 2011, 697 (01) : 32 - 36
  • [29] Exploring the effect of hadron cascade time on particle production in Xe plus Xe collisions at √SNN=5.44 TeV using a multiphase transport model
    Pradhan, Girija Sankar
    Rath, Rutuparna
    Scaria, Ronald
    Sahoo, Raghunath
    PHYSICAL REVIEW C, 2022, 105 (05)
  • [30] Production of high-energy neutron beam from deuteron breakup
    Wang, Ren-Sheng
    Ou, Li
    Xiao, Zhi-Gang
    NUCLEAR SCIENCE AND TECHNIQUES, 2022, 33 (07)