On majority domination in graphs

被引:9
|
作者
Holm, TS [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
majority domination; NP-completeness; external problems; graph algorithms;
D O I
10.1016/S0012-365X(00)00370-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A majority dominating function on the vertex set of a graph G=(V,E) is a function g:V --> {1,-1} such that g(N[v]) greater than or equal to1 for at least half of the vertices v in V. The weight of a majority dominating function is denoted as g(V) and is Sigma g(v) over all v in V. The majority domination number of a graph is the minimum possible weight of a majority dominating function, and is denoted as gamma (maj)(G). We determine the majority domination numbers of certain families of graphs. Moreover, we show that the decision problem corresponding to computing the majority domination number of an arbitrary disjoint union of complete graphs is NP-complete. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] Unique irredundance, domination and independent domination in graphs
    Fischermann, M
    Volkmann, L
    Zverovich, I
    DISCRETE MATHEMATICS, 2005, 305 (1-3) : 190 - 200
  • [22] On Secure Domination in Graphs
    Merouane, Houcine Boumediene
    Chellali, Mustapha
    INFORMATION PROCESSING LETTERS, 2015, 115 (10) : 786 - 790
  • [23] On the signed domination in graphs
    Matousek, J
    COMBINATORICA, 2000, 20 (01) : 103 - 108
  • [24] Domination in Circulant Graphs
    Rad, Nader Jafari
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (01): : 169 - 176
  • [25] Partial Domination in Graphs
    Angsuman Das
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 1713 - 1718
  • [26] DOMINATION ON COCOMPARABILITY GRAPHS
    KRATSCH, D
    STEWART, L
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1993, 6 (03) : 400 - 417
  • [27] Domination index in graphs
    Nair, Kavya. R.
    Sunitha, M. S.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (10)
  • [28] Domination in signed graphs
    Jeyalakshmi, P.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (01)
  • [29] Theory of Domination in Graphs
    Sinha, Deepa
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (06): : 903 - +
  • [30] Rainbow domination in graphs
    Bresar, Bostjan
    Henning, Michael A.
    Rall, Douglas F.
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (01): : 213 - 225