PGC-1α Determines Light Damage Susceptibility of the Murine Retina

被引:47
作者
Egger, Anna [1 ]
Samardzija, Marijana [2 ]
Sothilingam, Vithiyanjali [3 ]
Tanimoto, Naoyuki [3 ]
Lange, Christina [2 ]
Salatino, Silvia [1 ]
Fang, Lei
Garcia-Garrido, Marina
Beck, Susanne [3 ]
Okoniewski, Michal J. [5 ]
Neutzner, Albert [4 ]
Seeliger, Mathias W. [3 ]
Grimm, Christian [2 ]
Handschin, Christoph [1 ]
机构
[1] Univ Basel, Biozentrum, Div Pharmacol Neurobiol, Basel, Switzerland
[2] Univ Zurich, Dept Ophthalmol, Lab Retinal Cell Biol, Schlieren, Switzerland
[3] Univ Tubingen, Inst Ophthalm Res, Div Expt Ophthalmol, Tubingen, Germany
[4] Univ Basel Hosp, Dept Med, Univ Eye Clin, CH-4031 Basel, Switzerland
[5] Funct Genom Ctr UNI ETH Zurich, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
SKELETAL-MUSCLE; ENERGY-METABOLISM; PGC-1; COACTIVATORS; PHOTORECEPTORS; EXPRESSION; EXERCISE; PGC1-ALPHA; MECHANISMS; PIGMENTOSA; APOPTOSIS;
D O I
10.1371/journal.pone.0031272
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) proteins are key regulators of cellular bioenergetics and are accordingly expressed in tissues with a high energetic demand. For example, PGC-1 alpha and PGC-1 beta control organ function of brown adipose tissue, heart, brain, liver and skeletal muscle. Surprisingly, despite their prominent role in the control of mitochondrial biogenesis and oxidative metabolism, expression and function of the PGC-1 coactivators in the retina, an organ with one of the highest energy demands per tissue weight, are completely unknown. Moreover, the molecular mechanisms that coordinate energy production with repair processes in the damaged retina remain enigmatic. In the present study, we thus investigated the expression and function of the PGC-1 coactivators in the healthy and the damaged retina. We show that PGC-1 alpha and PGC-1 beta are found at high levels in different structures of the mouse retina, most prominently in the photoreceptors. Furthermore, PGC-1 alpha knockout mice suffer from a striking deterioration in retinal morphology and function upon detrimental light exposure. Gene expression studies revealed dysregulation of all major pathways involved in retinal damage and apoptosis, repair and renewal in the PGC-1 alpha knockouts. The light-induced increase in apoptosis in vivo in the absence of PGC-1 alpha was substantiated in vitro, where overexpression of PGC-1 alpha evoked strong anti-apoptotic effects. Finally, we found that retinal levels of PGC-1 expression are reduced in different mouse models for retinitis pigmentosa. We demonstrate that PGC-1 alpha is a central coordinator of energy production and, importantly, all of the major processes involved in retinal damage and subsequent repair. Together with the observed dysregulation of PGC-1 alpha and PGC-1 beta in retinitis pigmentosa mouse models, these findings thus imply that PGC-1 alpha might be an attractive target for therapeutic approaches aimed at retinal degeneration diseases.
引用
收藏
页数:12
相关论文
共 42 条
[1]   The role of PGC-1α on mitochondrial function and apoptotic susceptibility in muscle [J].
Adhihetty, Peter J. ;
Uguccioni, Giulia ;
Leick, Lotte ;
Hidalgo, Juan ;
Pilegaard, Henriette ;
Hood, David A. .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2009, 297 (01) :C217-C225
[2]   ENERGY-METABOLISM OF RABBIT RETINA AS RELATED TO FUNCTION - HIGH COST OF NA+ TRANSPORT [J].
AMES, A ;
LI, YY ;
HEHER, EC ;
KIMBLE, CR .
JOURNAL OF NEUROSCIENCE, 1992, 12 (03) :840-853
[3]   Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle [J].
Arany, Z ;
He, HM ;
Lin, JD ;
Hoyer, K ;
Handschin, C ;
Toka, O ;
Ahmad, F ;
Matsui, T ;
Chin, S ;
Wu, PH ;
Rybkin, II ;
Shelton, JM ;
Manieri, M ;
Cinti, S ;
Schoen, FJ ;
Bassel-Duby, R ;
Rosenzweig, A ;
Ingwall, JS ;
Spiegelman, BM .
CELL METABOLISM, 2005, 1 (04) :259-271
[4]   Two mouse retinal degenerations caused by missense mutations in the β-subunit of rod cGMP phosphodiesterase gene [J].
Chang, B. ;
Hawes, N. L. ;
Pardue, M. T. ;
German, A. M. ;
Hurd, R. E. ;
Davisson, M. T. ;
Nusinowitz, S. ;
Rengarajan, K. ;
Boyd, A. P. ;
Sidney, S. S. ;
Phillips, M. J. ;
Stewart, R. E. ;
Chaudhury, R. ;
Nickerson, J. M. ;
Heckenlively, J. R. ;
Boatright, J. H. .
VISION RESEARCH, 2007, 47 (05) :624-633
[5]   Peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1α) is a metabolic regulator of intestinal epithelial cell fate [J].
D'Errico, Ilenia ;
Salvatore, Lorena ;
Murzilli, Stefania ;
Lo Sasso, Giuseppe ;
Latorre, Dominga ;
Martelli, Nicola ;
Egorova, Anastasia V. ;
Polishuck, Roman ;
Madeyski-Bengtson, Katja ;
Lelliott, Christopher ;
Vidal-Puig, Antonio J. ;
Seibel, Peter ;
Villani, Gaetano ;
Moschetta, Antonio .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (16) :6603-6608
[6]   Cone-like morphological, molecular, and electrophysiological features of the photoreceptors of the Nrl knockout mouse [J].
Daniele, LL ;
Lillo, C ;
Lyubarsky, AL ;
Nikonov, SS ;
Philp, N ;
Mears, AJ ;
Swaroop, A ;
Williams, DS ;
Pugh, EN .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2005, 46 (06) :2156-2167
[7]  
Ershov AV, 2000, J NEUROSCI RES, V60, P328, DOI 10.1002/(SICI)1097-4547(20000501)60:3<328::AID-JNR7>3.0.CO
[8]  
2-5
[9]   PGC-1 coactivators: inducible regulators of energy metabolism in health and disease [J].
Finck, BN ;
Kelly, DP .
JOURNAL OF CLINICAL INVESTIGATION, 2006, 116 (03) :615-622
[10]   Noninvasive, In Vivo Assessment of Mouse Retinal Structure Using Optical Coherence Tomography [J].
Fischer, M. Dominik ;
Huber, Gesine ;
Beck, Susanne C. ;
Tanimoto, Naoyuki ;
Muehlfriedel, Regine ;
Fahl, Edda ;
Grimm, Christian ;
Wenzel, Andreas ;
Reme, Charlotte E. ;
van de Pavert, Serge A. ;
Wijnholds, Jan ;
Pacal, Marek ;
Bremner, Rod ;
Seeliger, Mathias W. .
PLOS ONE, 2009, 4 (10)