Flame synthesis of graphene films in open environments

被引:83
作者
Memon, Nasir K. [1 ]
Tse, Stephen D. [1 ]
Al-Sharab, Jafar F. [2 ]
Yamaguchi, Hisato [2 ]
Goncalves, Alem-Mar B. [3 ]
Kear, Bernard H. [2 ]
Jaluria, Yogesh [1 ]
Andrei, Eva Y. [3 ]
Chhowalla, Manish [2 ]
机构
[1] Rutgers State Univ, Dept Mech & Aerosp Engn, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Dept Mat Sci & Engn, Piscataway, NJ 08854 USA
[3] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
CHEMICAL-VAPOR-DEPOSITION; INVERSE DIFFUSION FLAMES; LARGE-AREA; CARBON NANOTUBES; LAYER GRAPHENE; CATALYST; SIZE;
D O I
10.1016/j.carbon.2011.07.024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Few-layer graphene is grown on copper and nickel substrates at high rates using a novel flame synthesis method in open-atmosphere environments. Transmittance and resistance properties of the transferred films are similar to those grown by other methods, but the concentration of oxygen, as assessed by X-ray photoelectron spectroscopy, is actually less than that for graphene grown by chemical vapor deposition under near vacuum conditions. The method involves utilizing a multi-element inverse-diffusion-flame burner, where post-flame species and temperatures are radially-uniform upon deposition at a substrate. Advantages of the specific flame synthesis method are scalability for large-area surface coverage, increased growth rates, high purity and yield, continuous processing, and reduced costs due to efficient use of fuel as both heat source and reagent. Additionally, by adjusting local growth conditions, other carbon nanostructures (i.e. nanotubes) are readily synthesized. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5064 / 5070
页数:7
相关论文
共 34 条
  • [1] Graphene Synthesis on Cubic SiC/Si Wafers. Perspectives for Mass Production of Graphene-Based Electronic Devices
    Aristov, Victor Yu.
    Urbanik, Grzegorz
    Kummer, Kurt
    Vyalikh, Denis V.
    Molodtsova, Olga V.
    Preobrajenski, Alexei B.
    Zakharov, Alexei A.
    Hess, Christian
    Haenke, Torben
    Buechner, Bernd
    Vobornik, Ivana
    Fujii, Jun
    Panaccione, Giancarlo
    Ossipyan, Yuri A.
    Knupfer, Martin
    [J]. NANO LETTERS, 2010, 10 (03) : 992 - 995
  • [2] Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
  • [3] Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst
    Bhaviripudi, Sreekar
    Jia, Xiaoting
    Dresselhaus, Mildred S.
    Kong, Jing
    [J]. NANO LETTERS, 2010, 10 (10) : 4128 - 4133
  • [4] Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
  • [5] Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation
    Chae, Seung Jin
    Guenes, Fethullah
    Kim, Ki Kang
    Kim, Eun Sung
    Han, Gang Hee
    Kim, Soo Min
    Shin, Hyeon-Jin
    Yoon, Seon-Mi
    Choi, Jae-Young
    Park, Min Ho
    Yang, Cheol Woong
    Pribat, Didier
    Lee, Young Hee
    [J]. ADVANCED MATERIALS, 2009, 21 (22) : 2328 - +
  • [6] RAMAN MICROPROBE STUDIES ON CARBON MATERIALS
    CUESTA, A
    DHAMELINCOURT, P
    LAUREYNS, J
    MARTINEZALONSO, A
    TASCON, JMD
    [J]. CARBON, 1994, 32 (08) : 1523 - 1532
  • [7] Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams
    Deck, CP
    Vecchio, K
    [J]. CARBON, 2006, 44 (02) : 267 - 275
  • [8] Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/nmat2382, 10.1038/NMAT2382]
  • [9] Raman spectrum of graphene and graphene layers
    Ferrari, A. C.
    Meyer, J. C.
    Scardaci, V.
    Casiraghi, C.
    Lazzeri, M.
    Mauri, F.
    Piscanec, S.
    Jiang, D.
    Novoselov, K. S.
    Roth, S.
    Geim, A. K.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)
  • [10] Interpretation of Raman spectra of disordered and amorphous carbon
    Ferrari, AC
    Robertson, J
    [J]. PHYSICAL REVIEW B, 2000, 61 (20) : 14095 - 14107