Regulation of the human skeletal muscle chloride channel hClC-1 by protein kinase C

被引:43
作者
Rosenbohm, A
Rüdel, R
Fahlke, C
机构
[1] Vanderbilt Univ, Med Ctr, Sch Med, Dept Med, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Sch Med, Dept Pharmacol, Nashville, TN 37232 USA
[3] Univ Ulm, Allgemeine Physiol Abt, D-89069 Ulm, Germany
来源
JOURNAL OF PHYSIOLOGY-LONDON | 1999年 / 514卷 / 03期
关键词
D O I
10.1111/j.1469-7793.1999.677ad.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. The regulation of a recombinant human muscle chloride channel, hClC-1, by protein kinase C (PKC) was investigated in human embryonic kidney (HEK 293) cells. 2. External application of 4 beta-phorbol esters (4 beta-PMA) reduced the instantaneous whole-cell current amplitude over the entire voltage range tested. This effect was abolished when the cells were intracellularly perfused with a specific protein kinase C inhibitor, chelerythine. Inactive 4 alpha-phorbolesters did not affect the chloride currents. We conclude that the effect of 4 beta-phorbol esters is mediated by protein kinase C (PKC). 3. Activation of PKC resulted in changes in macroscopic current kinetics. The time course of current deactivation determined in the presence and absence of 4 beta-phorbol esters could be fitted with the sum of two exponentials and a constant value. In the presence of phorbol esters, the fast time constants and the minimum value of the fraction of non-deactivating current were increased, whereas the voltage dependence of all fractional current amplitudes remained unchanged. PKC-induced phosphorylation had only small effects on the voltage dependence of the relative open probability and the maximum absolute open probability was unaffected by treatment with 4 beta-PMA, as shown by non-stationary noise analysis. 4. The kinetic changes indicate that phosphorylation alters functional properties of active channels. Since the absolute open probability is not reduced, the observed macroscopic current reduction implies alterations of the ion permeation process. 5. Phosphorylation by PKC appears to affect ion transfer and gating processes. It is postulated that the phosphorylation site may be located at the cytoplasmic vestibule face of the pore.
引用
收藏
页码:677 / 685
页数:9
相关论文
共 29 条
[1]   REPETITIVE DISCHARGE IN MYOTONIC MUSCLE-FIBERS [J].
ADRIAN, RH ;
BRYANT, SH .
JOURNAL OF PHYSIOLOGY-LONDON, 1974, 240 (02) :505-515
[2]   Characteristics of skeletal muscle chloride channel ClC-1 and point mutant R304E expressed in Sf-9 insect cells [J].
Astill, DS ;
Rychkov, G ;
Clarke, JD ;
Hughes, BP ;
Roberts, ML ;
Bretag, AH .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1996, 1280 (02) :178-186
[3]   ClC-6 and ClC-7 are two novel broadly expressed members of the CLC chloride channel family [J].
Brandt, S ;
Jentsch, TJ .
FEBS LETTERS, 1995, 377 (01) :15-20
[4]   ACTIVATORS OF PROTEIN-KINASE-C INDUCE MYOTONIA BY LOWERING CHLORIDE CONDUCTANCE IN MUSCLE [J].
BRINKMEIER, H ;
JOCKUSCH, H .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1987, 148 (03) :1383-1389
[5]   CHLORIDE CONDUCTANCE IN NORMAL AND MYOTONIC MUSCLE FIBRES AND ACTION OF MONOCARBOXYLIC AROMATIC ACIDS [J].
BRYANT, SH ;
MORALESA.A .
JOURNAL OF PHYSIOLOGY-LONDON, 1971, 219 (02) :367-&
[6]   CHLORIDE CHANNEL REGULATION IN THE SKELETAL-MUSCLE OF NORMAL AND MYOTONIC GOATS [J].
BRYANT, SH ;
CONTECAMERINO, D .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1991, 417 (06) :605-610
[7]  
CASTAGNA M, 1982, J BIOL CHEM, V257, P7847
[8]   CHLORIDE CURRENTS ACROSS THE MEMBRANE OF MAMMALIAN SKELETAL-MUSCLE FIBERS [J].
FAHLKE, C ;
RUDEL, R .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 484 (02) :355-368
[9]   A mutation in autosomal dominant myotonia congenita affects pore properties of the muscle chloride channel [J].
Fahlke, C ;
Beck, CL ;
George, AL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (06) :2729-2734
[10]   Subunit stoichiometry of human muscle chloride channels [J].
Fahlke, C ;
Knittle, T ;
Gurnett, CA ;
Campbell, KP ;
George, AL .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 109 (01) :93-104