Minimal rates of entropy convergence for completely ergodic systems

被引:5
作者
Blume, F [1 ]
机构
[1] John Brown Univ, Dept Math, Siloarn Springs, AR 72761 USA
关键词
D O I
10.1007/BF02783038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If (X,T) is a completely ergodic system, then there exists a positive monotone increasing sequence {an}(n=1)(infinity) with lim(n-->infinity) a(n) = infinity and a positive concave function g defined on [1, infinity) for which g(x)/x(2) is not integrable such that [GRAPHICS] for all nontrivial partitions alpha of X into two sets.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 8 条
[1]   CUTTING AND STACKING, INTERVAL EXCHANGES AND GEOMETRIC-MODELS [J].
ARNOUX, P ;
ORNSTEIN, DS ;
WEISS, B .
ISRAEL JOURNAL OF MATHEMATICS, 1985, 50 (1-2) :160-168
[2]   Possible rates of entropy convergence [J].
Blume, F .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 :45-70
[3]  
BLUME F, IN PRESS MINIMAL RAT
[4]  
Blume F., 1995, THESIS U N CAROLINA
[5]  
PETERSEN K, 1983, ERGODIC THEORY
[6]   UNIVERSAL REDUNDANCY RATES FOR THE CLASS OF B-PROCESSES DO NOT EXIST [J].
SHIELDS, P ;
WEISS, B .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (02) :508-512
[7]   CUTTING AND STACKING - A METHOD FOR CONSTRUCTING STATIONARY-PROCESSES [J].
SHIELDS, PC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) :1605-1617
[8]   UNIVERSAL REDUNDANCY RATES DO NOT EXIST [J].
SHIELDS, PC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (02) :520-524