Walsh series analysis of the star discrepancy of digital nets and sequences

被引:0
作者
Larcher, G [1 ]
Pillichshammer, F [1 ]
机构
[1] Univ Linz, Inst Anal, A-4040 Linz, Austria
来源
MONTE CARLO AND QUASI-MONTE CARLO METHODS 2002 | 2004年
关键词
digital net; digital sequence; discrepancy function; star discrepancy; Walsh series analysis;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a new technique to estimate the star discrepancy of digital nets and sequences which is based on an analysis of the Walsh series of the discrepancy function.
引用
收藏
页码:315 / 327
页数:13
相关论文
共 15 条
[1]  
BEJIAN R, 1977, CR ACAD SCI A MATH, V285, P313
[2]  
DECLERCK L, 1986, MONATSH MATH, V101, P261, DOI 10.1007/BF01559390
[3]  
Faure H., 1995, LECT NOTES STAT, V106, P198
[4]  
FAURE H, 1996, ACTA ARITH, V75, P149
[5]   EXTREME AND L2 DISCREPANCIES OF SOME PLANE SETS [J].
HALTON, JH ;
ZAREMBA, SK .
MONATSHEFTE FUR MATHEMATIK, 1969, 73 (04) :316-&
[6]   Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration [J].
Larcher, G ;
Niederreiter, H ;
Schmid, WC .
MONATSHEFTE FUR MATHEMATIK, 1996, 121 (03) :231-253
[7]   Sums of distances to the nearest integer and the discrepancy of digital nets [J].
Larcher, G ;
Pillichshammer, F .
ACTA ARITHMETICA, 2003, 106 (04) :379-408
[8]   Base change problems for generalized Walsh series and multivariate numerical integration [J].
Larcher, G ;
Pirsic, G .
PACIFIC JOURNAL OF MATHEMATICS, 1999, 189 (01) :75-105
[9]   Walsh series analysis of the L2-discrepancy of symmetrisized point sets [J].
Larcher, G ;
Pillichshammer, F .
MONATSHEFTE FUR MATHEMATIK, 2001, 132 (01) :1-18
[10]  
LARCHER G, 1998, LECT NOTES STAT, V138, P167