Time-Domain Boundary Element Method with Broadband Impedance Boundary Condition

被引:1
作者
Rodio, Michelle E. [1 ,2 ]
Hu, Fang Q. [3 ]
Nark, Douglas M. [4 ]
机构
[1] NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA
[2] NASA, Langley Res Ctr, NextSilicon, HPC Developer Operat, Hampton, VA 23681 USA
[3] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
[4] NASA, Langley Res Ctr, Struct Acoust Branch, Hampton, VA 23681 USA
基金
美国国家科学基金会;
关键词
ACOUSTIC SCATTERING; RIGID BODIES; PROPAGATION; RADIATION;
D O I
10.2514/1.J060614
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Acoustic liners are an effective tool for noise reduction and are characterized by a frequency-dependent impedance value. In this paper, a time-domain boundary element method for acoustic scattering coupled with a broadband impedance boundary condition is studied for the case of no mean flow. A Burton-Miller reformulation of the time domain boundary element method for acoustic scattering is carried out with both the pressure and its surface normal derivative terms retained. A multipole impedance model is converted into the time domain and used for enforcing an impedance boundary condition over a wide range of frequencies. Discretization of the coupled system is described. In particular, the time-domain impedance boundary condition is discretized by the third-order implicit backward difference scheme. Stability of the coupling is assessed by an eigenvalue analysis. Scattering solutions that demonstrate the validity and stability of the numerical method are presented.
引用
收藏
页码:3661 / 3670
页数:10
相关论文
共 28 条
  • [1] Bowman J. J., 1987, ELECTROMAGNETIC ACOU
  • [2] APPLICATION OF INTEGRAL EQUATION METHODS TO NUMERICAL SOLUTION OF SOME EXTERIOR BOUNDARY-VALUE PROBLEMS
    BURTON, AJ
    MILLER, GF
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 323 (1553): : 201 - &
  • [3] Butcher J.C., 2008, NUMERICAL METHODS OR, Vsecond
  • [4] A stable boundary element method for modeling transient acoustic radiation
    Chappell, D. J.
    Harris, P. J.
    Henwood, D.
    Chakrabarti, R.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2006, 120 (01) : 74 - 80
  • [5] Dodson S. J., 1998, Applied Computational Electromagnetics Society Journal, V13, P291
  • [6] A generalized recursive convolution method for time-domain propagation in porous media
    Dragna, Didier
    Pineau, Pierre
    Blanc-Benon, Philippe
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2015, 138 (02) : 1030 - 1042
  • [7] Analysis of transient wave scattering from rigid bodies using a Burton-Miller approach
    Ergin, AA
    Shanker, B
    Michielssen, E
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1999, 106 (05) : 2396 - 2404
  • [8] EXTENSION OF KIRCHHOFFS FORMULA TO RADIATION FROM MOVING SURFACES
    FARASSAT, F
    MYERS, MK
    [J]. JOURNAL OF SOUND AND VIBRATION, 1988, 123 (03) : 451 - 460
  • [9] Time-domain impedance boundary conditions for computational acoustics and aeroacoustics
    Fung, KY
    Ju, HB
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2004, 18 (06) : 503 - 511
  • [10] Golub G.H., 1996, Matrix computations, Vthird