Robust global identification of linear parameter varying systems with generalised expectation-maximisation algorithm

被引:24
作者
Yang, Xianqiang [1 ]
Lu, Yaojie [2 ]
Yan, Zhibin [3 ]
机构
[1] Harbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150080, Heilongjiang, Peoples R China
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada
[3] Harbin Inst Technol, Nat Sci Res Ctr, Harbin 150080, Heilongjiang, Peoples R China
关键词
EM; INFERENCE;
D O I
10.1049/iet-cta.2014.0694
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, a robust approach to global identification of linear parameter varying (LPV) systems in an input-output setting is proposed. In practice, the industrial process data are often contaminated with outliers. In order to handle outliers in process modelling, the robust LPV modelling problem is formulated and solved in the scheme of generalised expectation-maximisation (GEM) algorithm. The measurement noise is taken to follow the Student's t-distribution instead of using the conventional Gaussian distribution, in this algorithm. The extent of robustness of the proposed approach is adaptively adjusted by optimising the degrees of freedom parameter of the Student's t-distribution iteratively through the maximisation step of the GEM algorithm. The numerical example is provided to demonstrate the effectiveness of the proposed approach.
引用
收藏
页码:1103 / 1110
页数:8
相关论文
共 25 条
  • [1] Identification of linear parameter varying models
    Bamieh, B
    Giarré, L
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2002, 12 (09) : 841 - 853
  • [2] Multiple model approach to nonlinear system identification with an uncertain scheduling variable using EM algorithm
    Chen, Lei
    Tulsyan, Aditya
    Huang, Biao
    Liu, Fei
    [J]. JOURNAL OF PROCESS CONTROL, 2013, 23 (10) : 1480 - 1496
  • [3] Identification of nonlinear parameter varying systems with missing output data
    Deng, Jing
    Huang, Biao
    [J]. AICHE JOURNAL, 2012, 58 (11) : 3454 - 3467
  • [4] Robust Probabilistic Multivariate Calibration Model
    Fang, Yi
    Jeong, Myong K.
    [J]. TECHNOMETRICS, 2008, 50 (03) : 305 - 316
  • [5] Multiple model LPV approach to nonlinear process identification with EM algorithm
    Fin, Xing
    Huang, Biao
    Shook, David S.
    [J]. JOURNAL OF PROCESS CONTROL, 2011, 21 (01) : 182 - 193
  • [6] The mixtures of Student's t-distributions as a robust framework for rigid registration
    Gerogiannis, Demetrios
    Nikou, Christophoros
    Likas, Aristidis
    [J]. IMAGE AND VISION COMPUTING, 2009, 27 (09) : 1285 - 1294
  • [7] LPV model identification for gain scheduling control:: An application to rotating stall and surge control problem
    Giarré, L
    Bauso, D
    Falugi, P
    Bamieh, B
    [J]. CONTROL ENGINEERING PRACTICE, 2006, 14 (04) : 351 - 361
  • [8] Robust Identification of Piecewise/Switching Autoregressive Exogenous Process
    Jin, Xing
    Huang, Biao
    [J]. AICHE JOURNAL, 2010, 56 (07) : 1829 - 1844
  • [9] Jylänki P, 2011, J MACH LEARN RES, V12, P3227
  • [10] Dealing with Irregular Data in Soft Sensors: Bayesian Method and Comparative Study
    Khatibisepehr, Shima
    Huang, Biao
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (22) : 8713 - 8723