Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion

被引:331
作者
Leonov, G. A. [1 ]
Kuznetsov, N. V. [1 ,2 ]
Mokaev, T. N. [1 ,2 ]
机构
[1] St Petersburg State Univ, Fac Math & Mech, St Petersburg 199034, Russia
[2] Univ Jyvaskyla, Dept Math Informat Technol, Jyvaskyla, Finland
基金
俄罗斯科学基金会;
关键词
LYAPUNOV FUNCTIONS; CHAOTIC FLOWS; LIMIT-CYCLES; OSCILLATIONS; DIMENSION; ALGORITHMS; EXISTENCE; DYNAMICS; AIZERMAN; BIFURCATIONS;
D O I
10.1140/epjst/e2015-02470-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we discuss self-excited and hidden attractors for systems of differential equations. We considered the example of a Lorenz-like system derived from the well-known Glukhovsky-Dolghansky and Rabinovich systems, to demonstrate the analysis of self-excited and hidden attractors and their characteristics. We applied the fishing principle to demonstrate the existence of a homoclinic orbit, proved the dissipativity and completeness of the system, and found absorbing and positively invariant sets. We have shown that this system has a self-excited attractor and a hidden attractor for certain parameters. The upper estimates of the Lyapunov dimension of self-excited and hidden attractors were obtained analytically.
引用
收藏
页码:1421 / 1458
页数:38
相关论文
共 176 条
  • [1] Scientific heritage of LP Shilnikov
    Afraimovich, Valentin S.
    Gonchenko, Sergey V.
    Lerman, Lev M.
    Shilnikov, Andrey L.
    Turaev, Dmitry V.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2014, 19 (04) : 435 - 460
  • [2] Aizerman M. A., 1949, Uspekhi Matematicheskikh Nauk, V4, P187
  • [3] Sequences of gluing bifurcations in an analog electronic circuit
    Akhtanov, Sayat N.
    Zhanabaev, Zeinulla Zh
    Zaks, Michael A.
    [J]. PHYSICS LETTERS A, 2013, 377 (25-27) : 1621 - 1626
  • [4] Alli-Oke R., 2012, P IEEE CONTR DEC C
  • [5] Andrievsky B.R., 2013, IFAC P VOLUMES IFAC, V19, P37, DOI [10.3182/20130902-5-DE-2040.00040, DOI 10.3182/20130902-5-DE-2040.00040]
  • [6] Andrievsky B. R., 2013, IFAC P, V46, P75
  • [7] [Anonymous], 2004, Pure and applied mathematics (Amsterdam)
  • [8] [Anonymous], COLLECTION SHORT PAP
  • [9] [Anonymous], 2011, IFAC Proc, DOI DOI 10.3182/20110828-6-IT-1002.03315
  • [10] [Anonymous], ELECT T NUMER ANAL