Small Traffic Sign Detection in Big Images: Searching Needle in a Hay

被引:9
作者
Rehman, Yawar [1 ]
Amanullah, Hafsa [2 ]
Shirazi, Muhammad Ayaz [3 ,4 ]
Kim, Min Young [3 ,5 ]
机构
[1] NED Univ Engn & Technol, Dept Elect Engn, Karachi 75270, Sindh, Pakistan
[2] Habib Univ, Dhanani Sch Sci & Engn, Karachi 75290, Sindh, Pakistan
[3] Kyungpook Natl Univ, IT Coll, Sch Elect Engn, Daegu 41566, South Korea
[4] NED Univ Engn & Technol, Natl Ctr Robot & Automat, Hapt Human Robot & Condit Monitoring Lab, Karachi 75270, Sindh, Pakistan
[5] Kyungpook Natl Univ, IT Coll, Res Ctr Neurosurg Robot Syst, Daegu 41566, South Korea
关键词
Detectors; Feature extraction; Roads; Convolutional neural networks; Proposals; Benchmark testing; Reliability; Anchor box algorithm; network pruning; small object detection; YOLOv3;
D O I
10.1109/ACCESS.2022.3150882
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic sign detection is an essential module of self-driving cars and driver assistance system. The major challenge being, traffic sign appear relatively smaller in road view images. It covers only 1%-2% of the total image area. Hence, its challenging to detect very small traffic sign in a larger image covering huge background of similar shape objects. Thus, we propose YOLOv3 network layers pruning and patch wise training strategy for small sized traffic sign detection. This aids in improving recall percentage and mean Average Precision. We also propose anchor box selection algorithm that uses bounding box dimension density to obtain optimal anchor set for the dataset. This reduces false positives and log-average miss rate. The proposed approach is evaluated on German traffic sign detection benchmark and Swedish traffic sign dataset and proves that it achieved a good balance between mAP and inference time.
引用
收藏
页码:18667 / 18680
页数:14
相关论文
共 32 条
[1]  
[Anonymous], 2020, **DATA OBJECT**, DOI 10.5281/zenodo.5112375
[2]   Real-time speed sign detection using the radial symmetry detector [J].
Barnes, Nick ;
Zelinsky, Alexander ;
Fletcher, Luke S. .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2008, 9 (02) :322-332
[3]  
Chen EH, 2019, IEEE INT C INTELL TR, P325, DOI [10.1109/ITSC.2019.8917340, 10.1109/itsc.2019.8917340]
[4]   Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving [J].
Choi, Jiwoong ;
Chun, Dayoung ;
Kim, Hyun ;
Lee, Hyuk-Jae .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :502-511
[5]  
Donoser Michael., 2006, Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, V1, P553
[6]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448
[7]   Automatic Traffic Signs and Panels Inspection System Using Computer Vision [J].
Gonzalez, Alvaro ;
Angel Garcia-Garrido, Miguel ;
Fernandez Llorca, David ;
Gavilan, Miguel ;
Pablo Fernandez, J. ;
Alcantarilla, Pablo F. ;
Parra, Ignacio ;
Herranz, Fernando ;
Bergasa, Luis M. ;
Angel Sotelo, Miguel ;
Revenga de Toro, Pedro .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2011, 12 (02) :485-499
[8]  
Gupta A, 2018, IEEE INT C INTELL TR, P274, DOI 10.1109/ITSC.2018.8569556
[9]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
[10]   Automatic Traffic Sign Detection and Recognition Using SegU-Net and a Modified Tversky Loss Function With L1-Constraint [J].
Kamal, Uday ;
Tonmoy, Thamidul Islam ;
Das, Sowmitra ;
Hasan, Md. Kamrul .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (04) :1467-1479