Graphene Growth via Carburization of Stainless Steel and Application in Energy Storage

被引:49
作者
Gullapalli, Hemtej [1 ]
Reddy, Arava Leela Mohana [1 ]
Kilpatrick, Stephen [2 ]
Dubey, Madan [2 ]
Ajayan, Pulickel M. [1 ]
机构
[1] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA
[2] USA, Res Lab, Adelphi, MD 20783 USA
关键词
LITHIUM ION BATTERIES; CARBON; INTERCALATION; FILMS; ELECTRODES; PERFORMANCE; GRAPHITE;
D O I
10.1002/smll.201100111
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A modified version of the carburization process, a widely established technique used in the steel industry for case hardening of components, is used for the growth of graphene on stainless steel. Controlled growth of high-quality single- and few-layered graphene on stainless steel (SS) foils through a liquid-phase chemical vapor deposition (CVD) technique is reported. Reversible Li intercalation in these graphene-on-SS structures is demonstrated, where graphene and SS act as electrode and current collector, respectively, providing very good electrical contact. Direct growth of an active electrode material, such as graphene, on current-collector substrates makes this a feasible and efficient process for developing thin-film battery devices.
引用
收藏
页码:1697 / 1700
页数:4
相关论文
共 23 条
[1]   THE STUDY OF LI-GRAPHITE INTERCALATION PROCESSES IN SEVERAL ELECTROLYTE SYSTEMS USING IN-SITU X-RAY-DIFFRACTION [J].
AURBACH, D ;
EINELI, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (06) :1746-1752
[2]   In situ atomic force microscopy study of dimensional changes during Li+ ion intercalation/de-intercalation in highly oriented pyrolytic graphite [J].
Campana, FP ;
Kötz, R ;
Vetter, J ;
Novák, P ;
Siegenthaler, H .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (01) :107-112
[3]  
Ci L, 2010, NAT MATER, V9, P430, DOI [10.1038/nmat2711, 10.1038/NMAT2711]
[4]   DEPENDENCE OF THE ELECTROCHEMICAL INTERCALATION OF LITHIUM IN CARBONS ON THE CRYSTAL-STRUCTURE OF THE CARBON [J].
DAHN, JR ;
SLEIGH, AK ;
SHI, H ;
REIMERS, JN ;
ZHONG, Q ;
WAY, BM .
ELECTROCHIMICA ACTA, 1993, 38 (09) :1179-1191
[5]   SUPPRESSION OF STAGING IN LITHIUM-INTERCALATED CARBON BY DISORDER IN THE HOST [J].
DAHN, JR ;
FONG, R ;
SPOON, MJ .
PHYSICAL REVIEW B, 1990, 42 (10) :6424-6432
[6]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[7]   STUDIES OF LITHIUM INTERCALATION INTO CARBONS USING NONAQUEOUS ELECTROCHEMICAL-CELLS [J].
FONG, R ;
VONSACKEN, U ;
DAHN, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (07) :2009-2013
[8]   Electrochemical storage of lithium multiwalled carbon nanotubes [J].
Frackowiak, E ;
Gautier, S ;
Gaucher, H ;
Bonnamy, S ;
Beguin, F .
CARBON, 1999, 37 (01) :61-69
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Large-scale pattern growth of graphene films for stretchable transparent electrodes [J].
Kim, Keun Soo ;
Zhao, Yue ;
Jang, Houk ;
Lee, Sang Yoon ;
Kim, Jong Min ;
Kim, Kwang S. ;
Ahn, Jong-Hyun ;
Kim, Philip ;
Choi, Jae-Young ;
Hong, Byung Hee .
NATURE, 2009, 457 (7230) :706-710