A Promising Preoperative Prediction Model for Microvascular Invasion in Hepatocellular Carcinoma Based on an Extreme Gradient Boosting Algorithm

被引:19
作者
Liu, Weiwei [1 ]
Zhang, Lifan [2 ]
Xin, Zhaodan [1 ]
Zhang, Haili [3 ,4 ]
You, Liting [1 ]
Bai, Ling [1 ]
Zhou, Juan [1 ]
Ying, Binwu [1 ]
机构
[1] Sichuan Univ, West China Hosp, Dept Lab Med, Chengdu, Peoples R China
[2] Sichuan Univ, West China Hosp, Dept Gastroenterol & Hepatol, Chengdu, Peoples R China
[3] Sichuan Univ, West China Hosp, Dept Liver Surg, Chengdu, Peoples R China
[4] Sichuan Univ, West China Hosp, Liver Transplantat Ctr, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
microvascular invasion; non-invasive predictive models; machine learning; extreme gradient boosting (XGBoost); hepatocellular carcinoma; NEURAL-NETWORK; NOMOGRAM; MACHINE; RISK; DIAGNOSIS; RESECTION; SURVIVAL; MARKERS;
D O I
10.3389/fonc.2022.852736
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundThe non-invasive preoperative diagnosis of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) is vital for precise surgical decision-making and patient prognosis. Herein, we aimed to develop an MVI prediction model with valid performance and clinical interpretability. MethodsA total of 2160 patients with HCC without macroscopic invasion who underwent hepatectomy for the first time in West China Hospital from January 2015 to June 2019 were retrospectively included, and randomly divided into training and a validation cohort at a ratio of 8:2. Preoperative demographic features, imaging characteristics, and laboratory indexes of the patients were collected. Five machine learning algorithms were used: logistic regression, random forest, support vector machine, extreme gradient boosting (XGBoost), and multilayer perception. Performance was evaluated using the area under the receiver operating characteristic curve (AUC). We also determined the Shapley Additive exPlanation value to explain the influence of each feature on the MVI prediction model. ResultsThe top six important preoperative factors associated with MVI were the maximum image diameter, protein induced by vitamin K absence or antagonist-II, alpha-fetoprotein level, satellite nodules, alanine aminotransferase (AST)/aspartate aminotransferase (ALT) ratio, and AST level, according to the XGBoost model. The XGBoost model for preoperative prediction of MVI exhibited a better AUC (0.8, 95% confidence interval: 0.74-0.83) than the other prediction models. Furthermore, to facilitate use of the model in clinical settings, we developed a user-friendly online calculator for MVI risk prediction based on the XGBoost model. ConclusionsThe XGBoost model achieved outstanding performance for non-invasive preoperative prediction of MVI based on big data. Moreover, the MVI risk calculator would assist clinicians in conveniently determining the optimal therapeutic remedy and ameliorating the prognosis of patients with HCC.
引用
收藏
页数:12
相关论文
共 45 条
[1]   A Dynamic Aspartate-to-Alanine Aminotransferase Ratio Provides Valid Predictions of Incident Severe Liver Disease [J].
Aberg, Fredrik ;
Danford, Christopher J. ;
Thiele, Maja ;
Talback, Mats ;
Rasmussen, Ditlev Nytoft ;
Jiang, Z. Gordon ;
Hammar, Niklas ;
Nasr, Patrik ;
Ekstedt, Mattias ;
But, Anna ;
Puukka, Pauli ;
Krag, Aleksander ;
Sundvall, Jouko ;
Erlund, Iris ;
Salomaa, Veikko ;
Stal, Per ;
Kechagias, Stergios ;
Hultcrantz, Rolf ;
Lai, Michelle ;
Afdhal, Nezam ;
Jula, Antti ;
Mannisto, Satu ;
Lundqvist, Annamari ;
Perola, Markus ;
Farkkila, Martti ;
Hagstrom, Hannes .
HEPATOLOGY COMMUNICATIONS, 2021, 5 (06) :1021-1035
[2]   Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study [J].
Almansour, Njoud Abdullah ;
Syed, Hajra Fahim ;
Khayat, Nuha Radwan ;
Altheeb, Rawan Kanaan ;
Juri, Renad Emad ;
Alhiyafi, Jamal ;
Alrashed, Saleh ;
Olatunji, Sunday O. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 109 :101-111
[3]   An Interpretable Prediction Model for Identifying N7-Methylguanosine Sites Based on XGBoost and SHAP [J].
Bi, Yue ;
Xiang, Dongxu ;
Ge, Zongyuan ;
Li, Fuyi ;
Jia, Cangzhi ;
Song, Jiangning .
MOLECULAR THERAPY-NUCLEIC ACIDS, 2020, 22 :362-372
[4]   Integration of pre-surgical blood test results predict microvascular invasion risk in hepatocellular carcinoma [J].
Chen, Geng ;
Wang, Rendong ;
Zhang, Chen ;
Gui, Lijia ;
Xue, Yuan ;
Ren, Xianlin ;
Li, Zhenli ;
Wang, Sijia ;
Zhang, Zhenxi ;
Zhao, Jing ;
Zhang, Huqing ;
Yao, Cuiping ;
Wang, Jing ;
Liu, Jingfeng .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 :826-834
[5]   Comparison of Conventional Gadoxetate Disodium-Enhanced MRI Features and Radiomics Signatures With Machine Learning for Diagnosing Microvascular Invasion [J].
Chen, Yidi ;
Xia, Yuwei ;
Tolat, Parag P. ;
Long, Liling ;
Jiang, Zijian ;
Huang, Zhongkui ;
Tang, Qin .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2021, 216 (06) :1510-1520
[6]   Actual long-term survival in hepatocellular carcinoma patients with microvascular invasion: a multicenter study from China [J].
Chen, Zhen-Hua ;
Zhang, Xiu-Ping ;
Feng, Jin-Kai ;
Li, Le-Qun ;
Zhang, Fan ;
Hu, Yi-Ren ;
Zhong, Cheng-Qian ;
Shi, Jie ;
Guo, Wei-Xing ;
Wu, Meng-Chao ;
Lau, Wan Yee ;
Cheng, Shu-Qun .
HEPATOLOGY INTERNATIONAL, 2021, 15 (03) :642-650
[7]   Nomogram For Preoperative Prediction Of Microvascular Invasion Risk In Hepatocellular Carcinoma [J].
Deng, Guangtong ;
Yao, Lei ;
Zeng, Furong ;
Xiao, Liang ;
Wang, Zhiming .
CANCER MANAGEMENT AND RESEARCH, 2019, 11 :9037-9045
[8]   Machine learning algorithms estimating prognosis and guiding therapy in adult congenital heart disease: data from a single tertiary centre including 10019 patients [J].
Diller, Gerhard-Paul ;
Kempny, Aleksander ;
Babu-Narayan, Sonya V. ;
Henrichs, Marthe ;
Brida, Margarita ;
Uebing, Anselm ;
Lammers, Astrid E. ;
Baumgartner, Helmut ;
Li, Wei ;
Wort, Stephen J. ;
Dimopoulos, Konstantinos ;
Gatzoulis, Michael A. .
EUROPEAN HEART JOURNAL, 2019, 40 (13) :1069-1077
[9]   Prognostic Nomogram for Sorafenib Benefit in Hepatitis B Virus-Related Hepatocellular Carcinoma After Partial Hepatectomy [J].
Dong, Wei ;
Yan, Kai ;
Yu, Hua ;
Huo, Lei ;
Xian, Zhihong ;
Zhao, Yanqing ;
Li, Jutang ;
Zhang, Yuchan ;
Cao, Zhenying ;
Fu, Yong ;
Cong, Wenming ;
Dong, Hui .
FRONTIERS IN ONCOLOGY, 2021, 10
[10]   Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: Initial Application of a Radiomic Algorithm Based on Grayscale Ultrasound Images [J].
Dong, Yi ;
Zhou, Liu ;
Xia, Wei ;
Zhao, Xing-Yu ;
Zhang, Qi ;
Jian, Jun-Ming ;
Gao, Xin ;
Wang, Wen-Ping .
FRONTIERS IN ONCOLOGY, 2020, 10