A Harmonic Mean Inequality for the q-Gamma and q-Digamma Functions

被引:2
作者
Bouali, Mohamed [1 ]
机构
[1] Fac Sci Tunis, Inst Preparatoire Etud Ingn Tunis, Campus Univ El Manar, El Manar Tunis 2092, Tunisia
关键词
q-Digamma function; q-Psi function; q-Gamma function; Gamma function; Digamma function; BOUNDS;
D O I
10.2298/FIL2112105B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove among others results that the harmonic mean of Gamma(q)(x) and Gamma(q)(1/x) is greater than or equal to 1 for arbitrary x > 0, and q is an element of J where J is a subset of [0, +infinity). Also, we prove that there is a unique real number p(0) is an element of (1, 9/2), such that for q is an element of (0, p(0)), psi(q)(1) is the minimum of the harmonic mean of psi(q)(x) and psi(q)(1/x) for x > 0 and for q is an element of (p(0), +infinity), psi(q)(1) is the maximum. Our results generalize some known inequalities due to Alzer and Gautschi.
引用
收藏
页码:4105 / 4119
页数:15
相关论文
共 50 条
[41]   Refinement of some inequalities of q-gamma function [J].
Mansour, M. .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (04) :645-654
[42]   Logarithmically completely monotonic functions related to the q-gamma function and its applications [J].
Mehrez, Khaled ;
Das, Sourav .
ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (02)
[43]   On the functional equations of the q-Gamma function [J].
Mansour Mahmoud .
Aequationes mathematicae, 2015, 89 :1041-1050
[45]   Some proprieties for the q-Gamma functions via Wielandt's Theorem [J].
Elmonser, Hedi .
JOURNAL OF NUMBER THEORY, 2015, 156 :331-339
[46]   On the functional equations of the q-Gamma function [J].
Mahmoud, Mansour .
AEQUATIONES MATHEMATICAE, 2015, 89 (04) :1041-1050
[47]   A class of logarithmically completely monotonic functions related to the q-gamma function and applications [J].
Khaled Mehrez .
Positivity, 2017, 21 :495-507
[48]   Reciprocity theorems involving the q-gamma function [J].
Mohamed El Bachraoui ;
James Griffin .
The Ramanujan Journal, 2018, 45 :683-694
[49]   Some generalized equalities for the q-gamma function [J].
Ege, Inci ;
Yyldyrym, Emrah .
FILOMAT, 2012, 26 (06) :1227-1232
[50]   HERMITE'S FORMULA FOR q-GAMMA FUNCTION [J].
Mahmoud, Mansour ;
Agarwal, Ravi P. .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (03) :841-851