A General Strategy for Stretchable Microwave Antenna Systems using Serpentine Mesh Layouts

被引:50
作者
Chang, Tammy [1 ]
Tanabe, Yuji [1 ]
Wojcik, Charles C. [1 ]
Barksdale, Alex C. [1 ]
Doshay, Sage [1 ]
Dong, Zhenya [2 ]
Liu, Hao [3 ,4 ]
Zhang, Maoyi [3 ,5 ]
Chen, Yuli [4 ]
Su, Yewang [3 ,5 ,6 ,7 ]
Lee, Thomas H. [1 ]
Ho, John S. [2 ]
Fan, Jonathan A. [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[3] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
[4] Beihang Univ BUAA, Inst Solid Mech, Beijing 100191, Peoples R China
[5] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
[6] Dalian Univ Technol, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
[7] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
基金
美国国家科学基金会;
关键词
antennas; microwaves; serpentine meshs; stretchable electronics; FREQUENCY; ELECTRONICS; SENSORS; DESIGN;
D O I
10.1002/adfm.201703059
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wireless functionality is essential for the implementation of wearable systems, but its adaptation in stretchable electronic systems has had limited success. In this paper, the electromagnetic properties of stretchable serpentine mesh-based systems is studied, and this general strategy is used to produce high-performance stretchable microwave systems. Stretchable mechanics are enabled by converting solid metallic sections in conventional systems to subwavelength-scale serpentine meshes, followed by bonding to an elastomeric substrate. Compared to prior implementations of serpentine meshes in microwave systems, this conversion process is extended to arbitrary planar layouts, including those containing curvilinear shapes. A detailed theoretical analysis is also performed and a natural tradeoff is quantified between the stretching mechanics and microwave performance of these systems. To explore the translation of these concepts from theory to experiment, two types of stretchable microwave devices are fabricated and characterized: a stretchable far-field dipole antenna for communications and a stretchable midfield phased surface for the wireless powering of biomedical implanted devices.
引用
收藏
页数:8
相关论文
共 25 条
[1]   Conformal phased surfaces for wireless powering of bioelectronic microdevices [J].
Agrawal, Devansh R. ;
Tanabe, Yuji ;
Weng, Desen ;
Ma, Andrew ;
Hsu, Stephanie ;
Liao, Song-Yan ;
Zhen, Zhe ;
Zhu, Zi-Yi ;
Sun, Chuanbowen ;
Dong, Zhenya ;
Yang, Fengyuan ;
Tse, Hung Fat ;
Poon, Ada S. Y. ;
Ho, John S. .
NATURE BIOMEDICAL ENGINEERING, 2017, 1 (03)
[2]   Materials and Device Designs for an Epidermal UV Colorimetric Dosimeter with Near Field Communication Capabilities [J].
Araki, Hitoshi ;
Kim, Jeonghyun ;
Zhang, Shaoning ;
Banks, Anthony ;
Crawford, Kaitlyn E. ;
Sheng, Xing ;
Gutruf, Philipp ;
Shi, Yunzhou ;
Pielak, Rafal M. ;
Rogers, John A. .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (02)
[3]   A Microfluidic, Reversibly Stretchable, Large-Area Wireless Strain Sensor [J].
Cheng, Shi ;
Wu, Zhigang .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (12) :2282-2290
[4]   VIA-FREE CPW-BASED COMPOSITE RIGHT/LEFT-HANDED TRANSMISSION LINE AND A CALIBRATION APPROACH TO DETERMINE ITS PROPAGATION CONSTANT [J].
Dolatsha, N. ;
Shahabadi, M. ;
Dehbashi, R. .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2008, 22 (11-12) :1599-1606
[5]   Fractal design concepts for stretchable electronics [J].
Fan, Jonathan A. ;
Yeo, Woon-Hong ;
Su, Yewang ;
Hattori, Yoshiaki ;
Lee, Woosik ;
Jung, Sung-Young ;
Zhang, Yihui ;
Liu, Zhuangjian ;
Cheng, Huanyu ;
Falgout, Leo ;
Bajema, Mike ;
Coleman, Todd ;
Gregoire, Dan ;
Larsen, Ryan J. ;
Huang, Yonggang ;
Rogers, John A. .
NATURE COMMUNICATIONS, 2014, 5
[6]   Mechanically Reinforced Skin-Electronics with Networked Nanocomposite Elastomer [J].
Han, Seungyong ;
Kim, Min Ku ;
Wang, Bo ;
Wie, Dae Seung ;
Wang, Shuodao ;
Lee, Chi Hwan .
ADVANCED MATERIALS, 2016, 28 (46) :10257-10265
[7]  
Ho J. S., 2016, P IEEE INT S ANT PRO, P881
[8]   Planar immersion lens with metasurfaces [J].
Ho, John S. ;
Qiu, Brynan ;
Tanabe, Yuji ;
Yeh, Alexander J. ;
Fan, Shanhui ;
Poon, Ada S. Y. .
PHYSICAL REVIEW B, 2015, 91 (12)
[9]   Energy Transfer for Implantable Electronics in the Electromagnetic Midfield [J].
Ho, John S. ;
Poon, Ada S. Y. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2014, 148 :151-158
[10]   Epidermal radio frequency electronics for wireless power transfer [J].
Huang, Xian ;
Liu, Yuhao ;
Kong, Gil Woo ;
Seo, Jung Hun ;
Ma, Yinji ;
Jang, Kyung-In ;
Fan, Jonathan A. ;
Mao, Shimin ;
Chen, Qiwen ;
Li, Daizhen ;
Liu, Hank ;
Wang, Chuxuan ;
Patnaik, Dwipayan ;
Tian, Limei ;
Salvatore, Giovanni A. ;
Feng, Xue ;
Ma, Zhenqiang ;
Huang, Yonggang ;
Rogers, John A. .
MICROSYSTEMS & NANOENGINEERING, 2016, 2