On Approximation of Analytic Functions by Periodic Hurwitz Zeta-Functions

被引:5
作者
Franckevic, Violeta [1 ]
Laurincikas, Antanas [1 ]
Siauciunas, Darius [2 ,3 ]
机构
[1] Vilnius Univ, Fac Math & Informat, Inst Math, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
[2] Siauliai Univ, Dept Comp Sci, Vilniaus Str 141, LT-76353 Shiauliai, Lithuania
[3] Siauliai Univ, Res Inst, P Visinskio Str 25, LT-76351 Shiauliai, Lithuania
关键词
Hurwitz zeta-function; periodic Hurwitz zeta-function; universality; weak convergence of probability measures; UNIVERSALITY;
D O I
10.3846/mma.2019.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The periodic Hurwitz zeta-function zeta(s, alpha; a), s = sigma + it, with parameter 0 < alpha <= 1 and periodic sequence of complex numbers a = {a(m)} is defined, for sigma > 1, by the series Sigma(infinity)(m=0) a(m)/(m+alpha)(s), and can be continued moromorphically to the whole complex plane. It is known that the function zeta(s, alpha; a) with transcendental or rational alpha is universal, i.e., its shifts zeta(s+i tau, alpha; a) approximate all analytic functions defined in the strip D = {s is an element of C : 1/2 < sigma < 1}. In the paper, it is proved that, for all 0 < alpha <= 1 and a, there exists a non-empty closed set F-alpha,F-a of analytic functions on D such that every function f is an element of F-alpha,(a) can be approximated by shifts zeta(s + i tau, alpha; a).
引用
收藏
页码:20 / 33
页数:14
相关论文
共 9 条
[1]  
[Anonymous], 1996, MATH ITS APPL
[2]  
Billingsley P., 2013, Convergence of Probability Measures
[3]   Universality of the periodic Hurwitz zeta-function [J].
Javtokas, A. ;
Laurincikas, A. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2006, 17 (10) :711-722
[4]  
Javtokas A., 2006, HARDY RAMANUJAN J, V29, P18, DOI [10.46298/hrj.2006.154, DOI 10.46298/HRJ.2006.154]
[5]   Universality of the Periodic Hurwitz Zeta-Function with Rational Parameter [J].
Laurincikas, A. ;
Macaitiene, R. ;
Mochov, D. ;
Siauciunas, D. .
SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (05) :894-900
[6]  
Matsumoto K, 2015, SER NUMB THEORY APPL, V11, P95
[7]  
Mergelyan S.N., 1952, Usp. Mat. Nauk., V7, P31
[8]  
Steuding J., 2007, LECT NOTES MATH, V1877
[9]  
Voronin S. M., 1975, Math. USSR Izv., V39, P443, DOI 10.1070/IM1975v009n03ABEH001485