Estimation of Azimuth and Elevation for Multiple Acoustic Sources Using Tetrahedral Microphone Arrays and Convolutional Neural Networks

被引:5
|
作者
Sakavicius, Saulius [1 ]
Serackis, Arturas [1 ]
机构
[1] Vilnius Gediminas Tech Univ VILNIUS TECH, Dept Elect Syst, LT-03227 Vilnius, Lithuania
关键词
acoustic source localization; multiple source localization; machine learning; tetrahedral sensor arrays; SOUND SOURCE LOCALIZATION; CNN;
D O I
10.3390/electronics10212585
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A method for multiple acoustic source localization using a tetrahedral microphone array and a convolutional neural network (CNN) is presented. Our method presents a novel approach for the estimation of acoustic source direction of arrival (DoA), both azimuth and elevation, utilizing a non-coplanar microphone array. In our approach, we use the phase component of the short-time Fourier transform (STFT) of the microphone array's signals as the input feature for the CNN and a DoA probability density map as the training target. Our findings imply that our method outperforms the currently available methods for multiple sound source DoA estimation in both accuracy and speed.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Simulation of memristive crossbar arrays for seizure detection and prediction using parallel Convolutional Neural Networks
    Li, Chenqi
    Lammie, Corey
    Amirsoleimani, Amirali
    Azghadi, Mostafa Rahimi
    Genov, Roman
    SOFTWARE IMPACTS, 2023, 15
  • [22] Robust ToA-Estimation using Convolutional Neural Networks on Randomized Channel Models
    Feigl, Tobias
    Eberlein, Ernst
    Kram, Sebastian
    Mutschler, Christopher
    INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN 2021), 2021,
  • [23] Transient wall shear stress estimation in coronary bifurcations using convolutional neural networks
    Gharleghi, Ramtin
    Sowmya, Arcot
    Beier, Susann
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 225
  • [24] Source depth estimation with feature matching using convolutional neural networks in shallow water
    Liu, Mingda
    Niu, Haiqiang
    Li, Zhenglin
    Guo, Yonggang
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 155 (02) : 1119 - 1134
  • [25] Viscoelastic parameter estimation using simulated shear wave motion and convolutional neural networks
    Vasconcelos, Luiz
    Kijanka, Piotr
    Urban, Matthew W.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 133
  • [26] DOA estimation of multiple speech sources based on the single-source point detection using an FOA microphone
    Li, Lu
    Jia, Maoshen
    Wang, Jing
    APPLIED ACOUSTICS, 2022, 195
  • [27] Multiple sclerosis identification in brain MRI images using wavelet convolutional neural networks
    Alijamaat, Ali
    NikravanShalmani, Alireza
    Bayat, Peyman
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (02) : 778 - 785
  • [28] Quantification of Brain Lesions in Multiple Sclerosis Patients using Segmentation by Convolutional Neural Networks
    de Oliveira, Marcela
    Santinelli, Felipe Balistieri
    Piacenti-Silva, Marina
    Gomes Rocha, Fernando Coronetti
    Barbieri, Fabio Augusto
    Lisboa-Filho, Paulo Noronha
    Santos, Jorge Manuel
    Cardoso, Jaime dos Santos
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2045 - 2048
  • [29] Classification of formant estimation methods in transformed auditory feedback experiments using convolutional neural networks
    Taguchi, Fumiaki
    Hiroya, Sadao
    Uezu, Yasufumi
    Mochida, Takemi
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2020, 41 (05) : 800 - 803
  • [30] Multiple Sound Source Localization in Three Dimensions Using Convolutional Neural Networks and Clustering Based Post-Processing
    Sakavicius, Saulius
    Serackis, Arturas
    Abromavicius, Vytautas
    IEEE ACCESS, 2022, 10 : 125707 - 125722