Estimation of Azimuth and Elevation for Multiple Acoustic Sources Using Tetrahedral Microphone Arrays and Convolutional Neural Networks

被引:5
|
作者
Sakavicius, Saulius [1 ]
Serackis, Arturas [1 ]
机构
[1] Vilnius Gediminas Tech Univ VILNIUS TECH, Dept Elect Syst, LT-03227 Vilnius, Lithuania
关键词
acoustic source localization; multiple source localization; machine learning; tetrahedral sensor arrays; SOUND SOURCE LOCALIZATION; CNN;
D O I
10.3390/electronics10212585
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A method for multiple acoustic source localization using a tetrahedral microphone array and a convolutional neural network (CNN) is presented. Our method presents a novel approach for the estimation of acoustic source direction of arrival (DoA), both azimuth and elevation, utilizing a non-coplanar microphone array. In our approach, we use the phase component of the short-time Fourier transform (STFT) of the microphone array's signals as the input feature for the CNN and a DoA probability density map as the training target. Our findings imply that our method outperforms the currently available methods for multiple sound source DoA estimation in both accuracy and speed.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Direction of Arrival Estimation with Microphone Arrays Using SRP-PHAT and Neural Networks
    Diaz-Guerra, David
    Beltran, Jose R.
    2018 IEEE 10TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2018, : 617 - 621
  • [2] Gaze estimation using convolutional neural networks
    Karmi, Rawdha
    Rahmany, Ines
    Khlifa, Nawres
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (01) : 389 - 398
  • [3] Gaze estimation using convolutional neural networks
    Rawdha Karmi
    Ines Rahmany
    Nawres Khlifa
    Signal, Image and Video Processing, 2024, 18 : 389 - 398
  • [4] Vegetation Cover Estimation Using Convolutional Neural Networks
    Ghazal, Mohammed Asaad
    Mahmoud, Ali
    Aslantas, Ali
    Soliman, Ahmed
    Shalaby, Ahmed
    Benediktsson, Jon Atli
    El-Baz, Ayman
    IEEE ACCESS, 2019, 7 : 132563 - 132576
  • [5] Fast battery capacity estimation using convolutional neural networks
    Li, Yihuan
    Li, Kang
    Liu, Xuan
    Zhang, Li
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2020,
  • [6] Estimation of ocean turbulence intensity using convolutional neural networks
    Chen, Yonghao
    Liu, Xiaoyun
    Jiang, Jinyang
    Gao, Siyu
    Liu, Ying
    Jiang, Yueqiu
    FRONTIERS IN PHYSICS, 2023, 11
  • [7] A Tiny Machine Learning Approach to the Edge Localization of Acoustic Sources via Convolutional Neural Networks
    Zonzini, Federica
    Donati, Giacomo
    De Marchi, Luca
    ADVANCES IN SYSTEM-INTEGRATED INTELLIGENCE, SYSINT 2022, 2023, 546 : 340 - 349
  • [8] Direction Estimation of Instrumental Sound Sources Using Convolutional Neural Network Classification
    Yamamoto, Kaho
    Murata, Harumi
    Ogihara, Akio
    2024 INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS, AND COMMUNICATIONS, ITC-CSCC 2024, 2024,
  • [9] Hand Bone Age Estimation Using Deep Convolutional Neural Networks
    Mame, Antoine Badi
    Tapamo, Jules R.
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2021, PT I, 2022, 13087 : 61 - 72
  • [10] Acoustic classification in multifrequency echosounder data using deep convolutional neural networks
    Brautaset, Olav
    Waldeland, Anders Ueland
    Johnsen, Espen
    Malde, Ketil
    Eikvil, Line
    Salberg, Arnt-Borre
    Handegard, Nils Olav
    ICES JOURNAL OF MARINE SCIENCE, 2020, 77 (04) : 1391 - 1400