Unsteady Radiative Heat Transfer Model of a Ceria Particle Suspension Undergoing Solar Thermochemical Reduction

被引:9
作者
Bader, Roman [1 ]
Gampp, Lukas [2 ]
Breuille, Tristan [3 ]
Haussener, Sophia [3 ]
Steinfeld, Aldo [2 ]
Lipinski, Wojciech [1 ]
机构
[1] Australian Natl Univ, Res Sch Engn, Canberra, ACT 2601, Australia
[2] Swiss Fed Inst Technol, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
[3] Swiss Fed Inst Technol Lausanne, Sch Engn, CH-1015 Lausanne, Switzerland
基金
澳大利亚研究理事会;
关键词
MASS-TRANSFER ANALYSIS; HYDROGEN-PRODUCTION; STEAM-GASIFICATION; AEROSOL REACTOR; H-2; PRODUCTION; FLUIDIZED-BED; THERMAL-DISSOCIATION; OPTICAL-PROPERTIES; SYNGAS PRODUCTION; CHEMICAL REACTOR;
D O I
10.2514/1.T5314
中图分类号
O414.1 [热力学];
学科分类号
摘要
Unsteady radiative heat transfer is analyzed numerically in a directly irradiated plane-parallel medium containing a suspension of ceria particles undergoing nonstoichiometric thermal reduction. The micrometer-sized ceria particles are assumed homogenous, nongray, absorbing, emitting, and anisotropically scattering, whereas the overall medium is of nonuniform temperature and composition. The unsteady mass and energy conservation equations are solved using the finite volume method and the Shampine-Gordon time integration scheme. Radiative transport is modeled using the energy-portioning Monte Carlo ray-tracing method with radiative properties obtained from the Mie theory. Increasing the particle volume fraction and decreasing the particle diameter both increase the optical thickness of the particle suspension, resulting in increasing peak temperature and nonstoichiometry at steady state. For 5 mu m-diam particles under 1000 suns irradiation, the peak temperature at steady state ranges from 1855 K for a particle volume fraction of f(v) = 10(-6) to 2092 K for f(v) =10(-4); the temperature nonuniformity ranges from 9 to 622 K. For a fixed volume fraction of f(v) = 10(-6), decreasing the particle diameter from 20 to 1 mu m increases the peak temperature at steady state from 1734 to 2162 K; the temperature nonuniformity increases from 9 to 61 K.
引用
收藏
页码:63 / 77
页数:15
相关论文
共 92 条
[1]   Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides [J].
Abanades, Stephane ;
Flamant, Gilles .
SOLAR ENERGY, 2006, 80 (12) :1611-1623
[2]   Hydrolysis of evaporated Zn in a hot wall flow reactor [J].
Abu Hamed, Tareq ;
Davidson, Jane H. ;
Stolzenburg, Mark .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2008, 130 (04)
[3]   Solar water splitting for hydrogen production with monolithic reactors [J].
Agrafiotis, C ;
Roeb, M ;
Konstandopoulos, AG ;
Nalbandian, L ;
Zaspalis, VT ;
Sattler, C ;
Stobbe, P ;
Steele, AM .
SOLAR ENERGY, 2005, 79 (04) :409-421
[4]  
[Anonymous], 2015, THERMAL RAD HEAT TRA, DOI DOI 10.1201/B18835
[5]   Investigation of LaxSr1-xCoyM1-yO3-δ (M = Mn, Fe) perovskite materials as thermochemical energy storage media [J].
Babiniec, Sean M. ;
Coker, Eric N. ;
Miller, James E. ;
Ambrosini, Andrea .
SOLAR ENERGY, 2015, 118 :451-459
[6]  
Bader R, 2017, WOODHEAD PUBL SER EN, P403, DOI 10.1016/B978-0-08-100516-3.00018-6
[7]  
Bader R., 2016, SOL ENERGY, P345, DOI [DOI 10.1142/J.353656, 10.1142/9789814689502_0009, DOI 10.1142/9789814689502_0009]
[8]  
Binnewies M., 2002, THERMOCHEMICAL DATA, V2nd
[9]  
Bohren C.F., 2008, ABSORPTION SCATTERIN
[10]   Design and Characterization of a Novel Upward Flow Reactor for the Study of High-Temperature Thermal Reduction for Solar-Driven Processes [J].
Bush, H. Evan ;
Schlichting, Karl-Philipp ;
Gill, Robert J. ;
Jeter, Sheldon M. ;
Loutzenhiser, Peter G. .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2017, 139 (05)