Limit Cycles Bifurcating from a Family of Reversible Quadratic Centers via Averaging Theory

被引:0
作者
Llibre, Jaume [1 ]
Nabavi, Arefeh [2 ]
Mousavi, Marzieh [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2020年 / 30卷 / 04期
基金
欧盟地平线“2020”;
关键词
Limit cycle; quadratic reversible center; averaging theory; PERTURBATIONS; SYSTEMS;
D O I
10.1142/S0218127420500510
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the class of reversible quadratic systems (x) over dot = y, (y) over dot = -x + x(2) + y(2) - r(2), with r > 0. These quadratic polynomial differential systems have a center at the point ((1 - root 1 + 4r(2))/2, 0) and the circle x(2) + y(2) = r(2) is one of the periodic orbits surrounding this center. These systems can be written into the form (x) over dot = y + (4 + A)x(2) - Ay(2), (y) over dot = -x, with A is an element of (-2, 0). For all A is an element of R we prove that the averaging theory up to seventh order applied to this last system perturbed inside the whole class of quadratic polynomial differential systems can produce at most two limit cycles bifurcating from the periodic orbits surrounding the center (0, 0) of that system. Up to now this result was only known for A = -2 (see [Li, 2002; Liu, 2012]).
引用
收藏
页数:8
相关论文
共 25 条
  • [1] Centers and limit cycles of polynomial differential systems of degree 4 via averaging theory
    Benterki, Rebiha
    Llibre, Jaurne
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 313 : 273 - 283
  • [2] BIFURCATION OF LIMIT-CYCLES FROM CENTERS AND SEPARATRIX CYCLES OF PLANAR ANALYTIC SYSTEMS
    BLOWS, TR
    PERKO, LM
    [J]. SIAM REVIEW, 1994, 36 (03) : 341 - 376
  • [3] A unified proof on the weak Hilbert 16th problem for n=2
    Chen, F
    Li, CZ
    Llibre, J
    Zhang, ZH
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 221 (02) : 309 - 342
  • [4] Chen G, 2006, DISCRETE CONT DYN-A, V16, P157
  • [5] Christopher C., 2007, Advanced Courses in Mathematics
  • [6] Limit cycles bifurcating from a perturbed quartic center
    Coll, Bartomeu
    Llibre, Jaume
    Prohens, Rafel
    [J]. CHAOS SOLITONS & FRACTALS, 2011, 44 (4-5) : 317 - 334
  • [7] GAVRILOV L, 1993, J MATH PURE APPL, V72, P213
  • [8] On the shape of limit cycles that bifurcate from Hamiltonian centers
    Giacomini, H
    Llibre, J
    Viano, M
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (3-4) : 523 - 537
  • [9] Han M., 2012, INT J BIFURCATION CH, V22
  • [10] Han M., 2012, APPL MATH SCI, V181