Carbon nanodot-based humidity sensor for self-powered respiratory monitoring

被引:81
|
作者
Qin, Jinxu [1 ]
Yang, Xigui [1 ]
Shen, Chenglong [1 ]
Chang, Yu [1 ]
Deng, Yuan [1 ]
Zhang, Zhenfeng [1 ]
Liu, Hang [1 ]
Lv, Chaofan [1 ]
Li, Yizhe [1 ]
Zhang, Chuang [1 ]
Dong, Lin [1 ]
Shan, ChongXin [1 ]
机构
[1] Zhengzhou Univ, Sch Phys & Microelect, Henan Key Lab Diamond Optoelect Mat & Devices, Key Lab Mat Phys,Minist Educ, Zhengzhou 450052, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Carbon nanodot; Humidity sensor; Triboelectric nanogenerator; Self-powered device; Respiratory monitoring; DOTS; TRANSPARENT; FABRICATION; STATE; FILMS;
D O I
10.1016/j.nanoen.2022.107549
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing low-cost, portable, and high-performance humidity sensors for respiratory monitoring has received considerable attention in recent years. Herein, humidity sensors have been fabricated based on carbon nanodots (CDs), which exhibit high sensitivity (5318%) at 94% relative humidity (RH) and excellent long-time stability under the RH range of 11% to 94%. The high sensitivity can be attributed to the adsorption of the water molecules by the massive hydrophilic functional groups on the surface of CDs. By introducing a breath-driven triboelectric nanogenerator (TENG), the self-powered humidity sensor is developed for the first time, exhibiting a wide sensing range (11-94% RH) and excellent stability. The maximum output voltage of the TENG is up to 200 V and the maximum short-circuit current is about 9.2 mu A. Furthermore, the self-powered humidity sensor further demonstrates the potential ability for real-time respiration monitoring, which can detect different breathing statuses. This work provides a convenient and low-cost strategy for constructing sensitive CDs-based humidity sensors, and prospects their applications in respiratory monitoring systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Flexible wearable and self-powered humidity sensor based on moisture-dependent voltage generation
    Kan, Yan
    Wang, Shuhan
    Meng, Jianying
    Guo, Yuanhao
    Li, Xiaoqiang
    Gao, Dekang
    MICROCHEMICAL JOURNAL, 2021, 168
  • [32] Self-Powered, Highly Sensitive, and Flexible Humidity Sensor Based on Carboxymethyl Cellulose for Multifunctional Applications
    Dou, Yuhao
    Tang, Chengli
    Lu, Yebo
    LANGMUIR, 2023, 39 (48) : 17436 - 17445
  • [33] Self-Powered Textile Triboelectric Pulse Sensor for Cardiovascular Monitoring
    Jiang, Dongjie
    Xu, Ming
    Wang, Qining
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [34] A Self-Powered Wearable Sensor for Continuous Wireless Sweat Monitoring
    Gai, Yansong
    Wang, Engui
    Liu, Minghao
    Xie, Lirong
    Bai, Yuan
    Yang, Yuan
    Xue, Jiangtao
    Qu, Xuecheng
    Xi, Yuan
    Li, Linlin
    Luo, Dan
    Li, Zhou
    SMALL METHODS, 2022, 6 (10)
  • [35] Self-Powered Flexible Sensor Array for Dynamic Pressure Monitoring
    Wu, Li
    Xue, Jiangtao
    Meng, Jianping
    Shi, Bojing
    Sun, Wei
    Wang, Engui
    Dong, Mengji
    Zheng, Xuemei
    Wu, Yuxiang
    Li, Yusheng
    Li, Zhou
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (28)
  • [36] Transparent flexible nanogenerator as self-powered sensor for transportation monitoring
    Lin, Long
    Hu, Youfan
    Xu, Chen
    Zhang, Yan
    Zhang, Rui
    Wen, Xiaonan
    Wang, Zhong Lin
    NANO ENERGY, 2013, 2 (01) : 75 - 81
  • [37] A self-powered PVA-based flexible humidity sensor with humidity-related voltage output for multifunctional applications
    Guo, Yuanhao
    Xi, Huimin
    Gu, Zhijie
    Li, Mengjuan
    Li, Xiaoqiang
    Gao, Dekang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 658
  • [38] A self-powered triboelectric pressure sensor for basketball training monitoring
    Huo, Xiaomin
    MATERIALS LETTERS, 2022, 320
  • [39] A Self-powered Wireless Sensor Node for Structural Health Monitoring
    Zhou, Dao
    Kong, Na
    Ha, Dong Sam
    Inman, Daniel J.
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2010, PTS 1 AND 2, 2010, 7650
  • [40] An Effective Self-Powered Piezoelectric Sensor for Monitoring Basketball Skills
    Zhao, Chongle
    Jia, Changjun
    Zhu, Yongsheng
    Zhao, Tianming
    SENSORS, 2021, 21 (15)