Light intensity impacts the production of biofuel intermediates in Heterosigma akashiwo growing on simulated flue gas containing carbon dioxide and nitric oxide

被引:14
作者
Bianco, Colleen M. [1 ]
Stewart, Jennifer J. [1 ]
Miller, Katherine R. [2 ]
Fitzgerald, Catherine [2 ]
Coyne, Kathryn J. [1 ]
机构
[1] Univ Delaware, Sch Marine Sci & Policy, Lewes, DE 19958 USA
[2] Salisbury Univ, Dept Chem, Salisbury, MD 21801 USA
基金
美国农业部; 美国国家科学基金会; 美国海洋和大气管理局;
关键词
Heterosigma; Biofuel; Irradiance; Carbohydrate; Bioremediation; DELAWARE INLAND BAYS; CHATTONELLA-SUBSALSA; MICROALGAE; BIOMASS; RAPHIDOPHYTES;
D O I
10.1016/j.biortech.2016.07.119
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
As a potential biofuel feedstock, the marine microalga, Heterosigma akashiwo, accumulates significant lipids, is capable of long-term growth in outdoor photobioreactors, and is an excellent candidate for the bioremediation of industrial emissions. Here, we evaluated resource partitioning in H. akashiwo growing on a CO2 and NO gas mixture under three light intensities: 160, 560, or 1200 mu mol quanta m(-2) s(-1). Light levels had no effect on growth; however, cultures in high light accumulated 2.3-fold more carbohydrates and 17% fewer lipids. Light levels did not affect the percentage of saturated fatty acids, but mono-unsaturates increased by 6% and poly-unsaturates decreased by 12% in high light. The fatty acid profiles reported here suggest that H. akashiwo is a good candidate for the production of neutral lipids for biodiesel and also omega-3 fatty acids, and that the quality of biodiesel acquired from feedstocks grown under fluctuating light conditions would be relatively stable. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:246 / 251
页数:6
相关论文
共 30 条
[1]  
American Society for Testing Materials International, 2014, D675114 ASTM, pD6751
[2]   Microalgae for Biofuels and Animal Feeds [J].
Benemann, John .
ENERGIES, 2013, 6 (11) :5869-5886
[3]   Structural analysis of laminarans by MALDI and FAB mass spectrometry [J].
Chizhov, AO ;
Dell, A ;
Morris, HR ;
Reason, AJ ;
Haslam, SM ;
McDowell, RA ;
Chizhov, OS ;
Usov, AI .
CARBOHYDRATE RESEARCH, 1998, 310 (03) :203-210
[4]  
Davis R., 2012, ANLESD124 NAT REN EN
[5]   Integrated Evaluation of Cost, Emissions, and Resource Potential for Algal Biofuels at the National Scale [J].
Davis, Ryan E. ;
Fishman, Daniel B. ;
Frank, Edward D. ;
Johnson, Michael C. ;
Jones, Susanne B. ;
Kinchin, Christopher M. ;
Skaggs, Richard L. ;
Venteris, Erik R. ;
Wigmosta, Mark S. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (10) :6035-6042
[6]   Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs [J].
Douskova, I. ;
Doucha, J. ;
Livansky, K. ;
Machat, J. ;
Novak, P. ;
Umysova, D. ;
Zachleder, V. ;
Vitova, M. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2009, 82 (01) :179-185
[7]  
Environmental Protection Agency, 2014, AIR EM SOURC NITR OX
[8]  
Environmental Protection Agency, 2015, FED REGISTER, V80, P64884
[9]   Biomass and Lipid Production of Dinoflagellates and Raphidophytes in Indoor and Outdoor Photobioreactors [J].
Fuentes-Gruenewald, C. ;
Garces, E. ;
Alacid, E. ;
Rossi, S. ;
Camp, J. .
MARINE BIOTECHNOLOGY, 2013, 15 (01) :37-47
[10]   Improvement of lipid production in the marine strains Alexandrium minutum and Heterosigma akashiwo by utilizing abiotic parameters [J].
Fuentes-Gruenewald, C. ;
Garces, E. ;
Alacid, E. ;
Sampedro, N. ;
Rossi, S. ;
Camp, J. .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2012, 39 (01) :207-216