Parameter identification and synchronization of fractional-order chaotic systems

被引:87
|
作者
Yuan, Li-Guo [1 ,2 ]
Yang, Qi-Gui [1 ]
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
[2] S China Agr Univ, Dept Appl Math, Guangzhou 510640, Guangdong, Peoples R China
关键词
Fractional-order chaotic systems; Caputo fractional derivative; Particle swarm optimization; Chaos synchronization; Active control; ADAPTIVE SYNCHRONIZATION; PROJECTIVE SYNCHRONIZATION; OPTIMIZATION; ATTRACTORS; CHEN;
D O I
10.1016/j.cnsns.2011.04.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The knowledge about parameters and order is very important for synchronization of fractional-order chaotic systems. In this article, identification of parameters and order of fractional-order chaotic systems is converted to an optimization problem. Particle swarm optimization algorithm is used to solve this optimization problem. Based on the above parameter identification, synchronization of the fractional-order Lorenz, Chen and a novel system (commensurate or incommensurate order) is derived using active control method. The new fractional-order chaotic system has four-scroll chaotic attractors. The existence and uniqueness of solutions for the new fractional-order system are also investigated theoretically. Simulation results signify the performance of the work. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:305 / 316
页数:12
相关论文
共 50 条
  • [1] Chaotic Synchronization and Parameter Identification of Fractional-order Unified Systems
    Wang Shaoying
    Li Qiongyao
    Dong Jun
    Wu Aiguo
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 2454 - 2459
  • [2] An adaptive method to parameter identification and synchronization of fractional-order chaotic systems with parameter uncertainty
    Behinfaraz, Reza
    Badamchizadeh, Mohammadali
    Ghiasi, Amir Rikhtegar
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4468 - 4479
  • [3] Projective synchronization and parameter identification of a fractional-order chaotic system
    Kong De-fu
    Zhao Xiao-shan
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND INTELLIGENT SYSTEMS (ICMEIS 2015), 2015, 26 : 880 - 883
  • [4] Parameter Identification of Fractional-Order Discrete Chaotic Systems
    Peng, Yuexi
    Sun, Kehui
    He, Shaobo
    Peng, Dong
    ENTROPY, 2019, 21 (01):
  • [5] Synchronization of fractional-order chaotic systems
    Gao, X
    Yu, JB
    2005 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, PROCEEDINGS: VOL 1: COMMUNICATION THEORY AND SYSTEMS, 2005, : 1169 - 1172
  • [6] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    Zhou Ping
    Cheng Yuan-Ming
    Kuang Fei
    CHINESE PHYSICS B, 2010, 19 (09)
  • [7] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    周平
    程元明
    邝菲
    Chinese Physics B, 2010, (09) : 237 - 242
  • [9] Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems
    Wang, Chenhui
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [10] Chaotic synchronization for a class of fractional-order chaotic systems
    Zhou Ping
    CHINESE PHYSICS, 2007, 16 (05): : 1263 - 1266