Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips

被引:27
作者
Novak, Richard [1 ]
Didier, Meredyth [1 ,2 ]
Calamari, Elizabeth [1 ]
Ng, Carlos F. [1 ]
Choe, Youngjae [1 ]
Clauson, Susan L. [1 ]
Nestor, Bret A. [1 ]
Puerta, Jefferson [1 ]
Fleming, Rachel [1 ]
Firoozinezhad, Sasan J. [1 ]
Ingber, Donald E. [1 ,3 ,4 ,5 ,6 ]
机构
[1] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
[2] Apple Inc, Cupertino, CA USA
[3] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[4] Boston Childrens Hosp, Vasc Biol Program, Boston, MA USA
[5] Boston Childrens Hosp, Dept Surg, Boston, MA USA
[6] Harvard Med Sch, Boston, MA USA
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2018年 / 140期
关键词
Bioengineering; Issue; 140; Organ-on-a-chip; microphysiological system; microfluidic; microfabrication; PDMS; porous membrane; microchannel; cyclic strain; perfusion; ON-A-CHIP; SYSTEMS; DRUG; DESIGN;
D O I
10.3791/58151
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A significant number of lead compounds fail in the pharmaceutical pipeline because animal studies often fail to predict clinical responses in human patients. Human Organ-on-a-Chip (Organ Chip) microfluidic cell culture devices, which provide an experimental in vitro platform to assess efficacy, toxicity, and pharmacokinetic (PK) profiles in humans, may be better predictors of therapeutic efficacy and safety in the clinic compared to animal studies. These devices may be used to model the function of virtually any organ type and can be fluidically linked through common endothelium-lined microchannels to perform in vitro studies on human organ-level and whole body-level physiology without having to conduct experiments on people. These Organ Chips consist of two perfused microfluidic channels separated by a permeable elastomeric membrane with organ-specific parenchymal cells on one side and microvascular endothelium on the other, which can be cyclically stretched to provide organ-specific mechanical cues (e.g., breathing motions in lung). This protocol details the fabrication of flexible, dual channel, Organ Chips through casting of parts using 3D printed molds, enabling combination of multiple casting and post-processing steps. Porous poly (dimethyl siloxane) (PDMS) membranes are cast with micrometer sized through-holes using silicon pillar arrays under compression. Fabrication and assembly of Organ Chips involves equipment and steps that can be implemented outside of a traditional cleanroom. This protocol provides researchers with access to Organ Chip technology for in vitro organ- and body-level studies in drug discovery, safety and efficacy testing, as well as mechanistic studies of fundamental biological processes.
引用
收藏
页数:9
相关论文
共 23 条
  • [1] Matched-Comparative Modeling of Normal and Diseased Human Airway Responses Using a Microengineered Breathing Lung Chip
    Benam, Kambez H.
    Novak, Richard
    Nawroth, Janna
    Hirano-Kobayashi, Mariko
    Ferrante, Thomas C.
    Choe, Youngjae
    Prantil-Baun, Rachelle
    Weaver, James C.
    Bahinski, Anthony
    Parker, Kevin K.
    Ingber, Donald E.
    [J]. CELL SYSTEMS, 2016, 3 (05) : 456 - +
  • [2] Engineered In Vitro Disease Models
    Benam, Kambez H.
    Dauth, Stephanie
    Hassell, Bryan
    Herland, Anna
    Jain, Abhishek
    Jang, Kyung-Jin
    Karalis, Katia
    Kim, Hyun Jung
    MacQueen, Luke
    Mahmoodian, Roza
    Musah, Samira
    Torisawa, Yu-suke
    van der Meer, Andries D.
    Villenave, Remi
    Yadid, Moran
    Parker, Kevin K.
    Ingber, Donald E.
    [J]. ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 10, 2015, 10 : 195 - 262
  • [3] Microfluidic organs-on-chips
    Bhatia, Sangeeta N.
    Ingber, Donald E.
    [J]. NATURE BIOTECHNOLOGY, 2014, 32 (08) : 760 - 772
  • [4] Blaser D. W, 2007, DETERMINATION DRUG A
  • [5] A portable and reconfigurable multi-organ platform for drug development with onboard microfluidic flow control
    Coppeta, J. R.
    Mescher, M. J.
    Isenberg, B. C.
    Spencer, A. J.
    Kim, E. S.
    Lever, A. R.
    Mulhern, T. J.
    Prantil-Baun, R.
    Comolli, J. C.
    Borenstein, J. T.
    [J]. LAB ON A CHIP, 2017, 17 (01) : 134 - 144
  • [6] Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function
    Henry, Olivier Y. F.
    Villenave, Remi
    Cronce, Michael J.
    Leineweber, William D.
    Benz, Maximilian A.
    Ingber, Donald E.
    [J]. LAB ON A CHIP, 2017, 17 (13) : 2264 - 2271
  • [7] Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers
    Hubatsch, Ina
    Ragnarsson, Eva G. E.
    Artursson, Per
    [J]. NATURE PROTOCOLS, 2007, 2 (09) : 2111 - 2119
  • [8] Microfabrication of human organs-on-chips
    Huh, Dongeun
    Kim, Hyun Jung
    Fraser, Jacob P.
    Shea, Daniel E.
    Khan, Mohammed
    Bahinski, Anthony
    Hamilton, Geraldine A.
    Ingber, Donald E.
    [J]. NATURE PROTOCOLS, 2013, 8 (11) : 2135 - 2157
  • [9] A Human Disease Model of Drug Toxicity-Induced Pulmonary Edema in a Lung-on-a-Chip Microdevice
    Huh, Dongeun
    Leslie, Daniel C.
    Matthews, Benjamin D.
    Fraser, Jacob P.
    Jurek, Samuel
    Hamilton, Geraldine A.
    Thorneloe, Kevin S.
    McAlexander, Michael Allen
    Ingber, Donald E.
    [J]. SCIENCE TRANSLATIONAL MEDICINE, 2012, 4 (159)
  • [10] Reconstituting Organ-Level Lung Functions on a Chip
    Huh, Dongeun
    Matthews, Benjamin D.
    Mammoto, Akiko
    Montoya-Zavala, Martin
    Hsin, Hong Yuan
    Ingber, Donald E.
    [J]. SCIENCE, 2010, 328 (5986) : 1662 - 1668