Vassiliev invariants for torus knots

被引:12
作者
Alvarez, M [1 ]
Labastida, JMF [1 ]
机构
[1] UNIV SANTIAGO,DEPT FIS PARTICULAS,E-15706 SANTIAGO COMPOSTE,SPAIN
关键词
torus; knot; Vassiliev; Chern-Simons;
D O I
10.1142/S0218216596000436
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Vassiliev, invariants up to order six for arbitrary torus knots {n, m}, with n and m coprime integers, are computed. These invariants are polynomials in n and m whose degree coincide with their order. Furthermore, they turn out to be integer-valued in a normalization previously proposed by the authors.
引用
收藏
页码:779 / 803
页数:25
相关论文
共 40 条
[1]   ANALYSIS OF OBSERVABLES IN CHERN-SIMONS PERTURBATION-THEORY [J].
ALVAREZ, M ;
LABASTIDA, JMF .
NUCLEAR PHYSICS B, 1993, 395 (1-2) :198-238
[2]   NUMERICAL KNOT INVARIANTS OF FINITE-TYPE FROM CHERN-SIMONS PERTURBATION-THEORY [J].
ALVAREZ, M ;
LABASTIDA, JMF .
NUCLEAR PHYSICS B, 1995, 433 (03) :555-596
[3]  
ALVAREZ M, 1995, NUCL PHYS B, V441, P403
[4]  
Bar-Natan D., 1991, Perturbative aspects of the Chern-Simons topological quantum field theory
[5]   ON THE VASSILIEV KNOT INVARIANTS [J].
BARNATAN, D .
TOPOLOGY, 1995, 34 (02) :423-472
[6]  
BARNATAN D, 1991, WEIGHTS FEYNMAN DIAG
[7]   NEW POINTS-OF-VIEW IN KNOT-THEORY [J].
BIRMAN, JS .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 28 (02) :253-287
[8]   KNOT POLYNOMIALS AND VASSILIEV INVARIANTS [J].
BIRMAN, JS ;
LIN, XS .
INVENTIONES MATHEMATICAE, 1993, 111 (02) :225-270
[9]  
Bogle M G V., 1994, Journal of Knot Theory and Its Ramifications, V3, P121, DOI [DOI 10.1142/S0218216594000095, 10.1142/S0218216594000095]
[10]   ON THE SELF-LINKING OF KNOTS [J].
BOTT, R ;
TAUBES, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) :5247-5287