Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic acid over Ru/Al2O3 in a Trickle-Bed Reactor

被引:43
|
作者
da Fonseca Ferreira, Anna Danielli [1 ]
de Mello, Matheus Dorneles [1 ,2 ]
Pereira da Silva, Monica Antunes [1 ]
机构
[1] Univ Fed Rio de Janeiro, Ctr Tecnol, Escola Quim, Bloco E, BR-21941909 Rio De Janeiro, RJ, Brazil
[2] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA
关键词
SELECTIVE AEROBIC OXIDATION; AQUEOUS-PHASE OXIDATION; RU CATALYSTS; BIOMASS; BASE; HMF; 2,5-DIFORMYLFURAN; CONVERSION; SUPPORT; CARBON;
D O I
10.1021/acs.iecr.8b05602
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) was carried out over Ru/ Al2O3 using O-2 aqueous alkaline solutions in a trickle-bed reactor. HMF was completely converted at 140 degrees C, 30 bar O-2, resulting in 98% FDCA selectivity (pH 11, GHSV = 900 h(-1) WHSV = 1 h(-1)). At 140 degrees C, FDCA was the main product under all conditions. Alkali (nature and concentration) played a significant role in oxidation or degradation of HMF. The selectivity to oxidized compounds was favored using Na2CO3 by accelerating oxidation steps, principally to the aldehyde group maintaining an appropriate pH for the reaction. The estimated kinetic parameters obtained were statistically significant, suggesting an accurate representation of the system. The effects of parameters such as temperature, GHSV, WHSV, and oxygen pressure on product distribution and HMF conversion were evaluated. The catalyst showed high stability, retaining activity after 12 cycles, being reactivated by a simple hydrothermal treatment.
引用
收藏
页码:128 / 137
页数:10
相关论文
共 50 条
  • [1] Au/Al2O3 - Efficient catalyst for 5-hydroxymethylfurfural oxidation to 2,5-furandicarboxylic acid
    Megias-Sayago, C.
    Lolli, A.
    Ivanova, S.
    Albonetti, S.
    Cavani, F.
    Odriozola, J. A.
    CATALYSIS TODAY, 2019, 333 : 169 - 175
  • [2] Kinetic Modeling of Homogenous Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Wei, Zange
    Li, Wenhao
    Yuan, Fang
    Sun, Weizhen
    Zhao, Ling
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (50) : 18352 - 18361
  • [3] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Lufan Zheng
    Junqi Zhao
    Zexue Du
    Baoning Zong
    Haichao Liu
    Science China(Chemistry), 2017, 60 (07) : 950 - 957
  • [4] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Lufan Zheng
    Junqi Zhao
    Zexue Du
    Baoning Zong
    Haichao Liu
    Science China(Chemistry), 2017, (07) : 950 - 957
  • [5] Production of 2,5-furandicarboxylic acid via oxidation of 5-hydroxymethylfurfural over Pt/C in a continuous packed bed reactor
    Wadaugsorn, Kiattichai
    Lin, Kun-Yi
    Kaewchada, Amaraporn
    Jaree, Attasak
    RSC ADVANCES, 2022, 12 (28) : 18084 - 18092
  • [6] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Lufan Zheng
    Junqi Zhao
    Zexue Du
    Baoning Zong
    Haichao Liu
    Science China Chemistry, 2017, 60 : 950 - 957
  • [7] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Zheng, Lufan
    Zhao, Junqi
    Du, Zexue
    Zong, Baoning
    Liu, Haichao
    SCIENCE CHINA-CHEMISTRY, 2017, 60 (07) : 950 - 957
  • [8] Efficient Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Magnetic Laccase Catalyst
    Wang, Ke-Feng
    Liu, Chun-lei
    Sui, Kun-yan
    Guo, Chen
    Liu, Chun-Zhao
    CHEMBIOCHEM, 2018, 19 (07) : 654 - 659
  • [9] Chemocatalytic Oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic Acid Over Nickel Cobalt Oxide
    Prasad, Shivshankar
    Kumar, Ajay
    Dutta, Suman
    Ahmad, Ejaz
    CHEMCATCHEM, 2024, 16 (20)
  • [10] Ru/MgO-catalysed selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Lokhande, Priya
    Dhepe, Paresh L.
    Wilson, Karen
    Lee, Adam F.
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2024, 77 (10)