New Insights into Mitochondrial-Nuclear Interactions Revealed through Analysis of Small RNAs

被引:14
作者
Pozzi, Andrea [1 ]
Dowling, Damian K. [1 ]
机构
[1] Monash Univ, Sch Biol Sci, Clayton, Vic, Australia
来源
GENOME BIOLOGY AND EVOLUTION | 2022年 / 14卷 / 02期
基金
澳大利亚研究理事会;
关键词
mitonuclear communication; mtDNA; small RNAs; mitochondria; AGO2; READ ALIGNMENT; CIRCULAR RNAS; COMPLEXITY; SEQUENCES; ABUNDANT;
D O I
10.1093/gbe/evac023
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mitochondrial sequence variants affect phenotypic function, often through interaction with the nuclear genome. These "mitonuclear" interactions have been linked both to evolutionary processes and human health. The study of these interactions has focused on mechanisms regulating communication between mitochondrial and nuclear proteins; the role of mitochondrial (mt) RNAs has received little attention. Here, we show that small mt-RNAs bind to the nuclear protein Argonaute 2, and that nuclear miRNAs bind to mt-mRNAs. We identify one small mt-RNA that binds to Argonaute 2 in human tissues whose expression and sequence remain unchanged across vertebrates. Although analyses of CLEAR-CLIP sequencing data sets of human and mouse did not reveal consistent interactions between small mt-RNAs and nuclear mRNAs, we found that MT-ND4 and MT-ATP6 mRNAs are bound by different nuclear miRNAs in humans and mice. Our work homes in on previously unknown interactions between nuclear and small mt-RNAs, which may play key roles in intergenomic communication.
引用
收藏
页数:15
相关论文
共 56 条
  • [11] Regulation of microRNA biogenesis
    Ha, Minju
    Kim, V. Narry
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2014, 15 (08) : 509 - 524
  • [12] miR-10b-5p expression in Huntington's disease brain relates to age of onset and the extent of striatal involvement
    Hoss, Andrew G.
    Labadorf, Adam
    Latourelle, Jeanne C.
    Kartha, Vinay K.
    Hadzi, Tiffany C.
    Gusella, James F.
    MacDonald, Marcy E.
    Chen, Jiang-Fan
    Akbarian, Schahram
    Weng, Zhiping
    Vonsattel, Jean Paul
    Myers, Richard H.
    [J]. BMC MEDICAL GENOMICS, 2015, 8
  • [13] Hunt SE, 2018, DATABASE-OXFORD, DOI [10.1093/database/bay119, 10.1186/1471-2164-11-293]
  • [14] James AC, 2003, GENETICS, V164, P187
  • [15] Involvement of AGO1 and AGO2 in mammalian transcriptional silencing
    Janowski, Bethany A.
    Huffman, Kenneth E.
    Schwartz, Jacob C.
    Ram, Rosalyn
    Nordsell, Robert
    Shames, David S.
    Minna, John D.
    Corey, David R.
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2006, 13 (09) : 787 - 792
  • [16] tRNAdb 2009: compilation of tRNA sequences and tRNA genes
    Juehling, Frank
    Moerl, Mario
    Hartmann, Roland K.
    Sprinzl, Mathias
    Stadler, Peter F.
    Puetz, Joern
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 : D159 - D162
  • [17] The phylogenetic utility and functional constraint of microRNA flanking sequences
    Kenny, Nathan J.
    Sin, Yung Wa
    Hayward, Alexander
    Paps, Jordi
    Chu, Ka Hou
    Hui, Jerome H. L.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2015, 282 (1803)
  • [18] Experimental evidence that thermal selection shapes mitochondrial genome evolution
    Lajbner, Zdenek
    Pnini, Reuven
    Camus, M. Florencia
    Miller, Jonathan
    Dowling, Damian K.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [19] Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/NMETH.1923, 10.1038/nmeth.1923]
  • [20] The landscape of mitochondrial small non-coding RNAs in the PGCs of male mice, spermatogonia, gametes and in zygotes
    Larriba, Eduardo
    Rial, Eduardo
    del Mazo, Jesus
    [J]. BMC GENOMICS, 2018, 19