Application of Stacked Sparse Autoencoder in Automated Detection of Glaucoma in Fundus Images

被引:1
|
作者
Pratiher, Sawon [1 ]
Chattoraj, Subhankar [2 ]
Vishwakarma, Karan [2 ]
机构
[1] Indian Inst Technol Kharagpur, Kharagpur, WB, India
[2] Techno India Univ, Salt Lake, W Bengal, India
来源
UNCONVENTIONAL OPTICAL IMAGING | 2018年 / 10677卷
关键词
Medical imaging; Fundus image; Glaucoma; Stacked Sparse Autoencoder;
D O I
10.1117/12.2291992
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this contribution, intelligent identification of glaucoma from digital fundus images using stacked sparse autoencoder (SSAE) is proposed. The fundus images are initially converted to gray-scale and normalized w.r.t., background illuminance while maintaining contrast constancy across the dataset. Unfolded feature vectors from the pre-processed with proper rescaling and grays-scale converted fundus images are fed to SSAE for learning efficient feature representation and classification thereof using a softmax layer. A comparative evaluation highlighting the superiority of SSAE method with existing state-of the art techniques is presented to validate its efficacy in glaucoma detection. The proposed framework can be used as a clinical decision support system assisting ophthalmologists in confirming their diagnosis with high reliability & accuracy.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] A Two Layer Sparse Autoencoder for Glaucoma Identification with Fundus Images
    Raghavendra, U.
    Gudigar, Anjan
    Bhandary, Sulatha V.
    Rao, Tejaswi N.
    Ciaccio, Edward J.
    Acharya, U. Rajendra
    JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (09)
  • [2] A Two Layer Sparse Autoencoder for Glaucoma Identification with Fundus Images
    U. Raghavendra
    Anjan Gudigar
    Sulatha V. Bhandary
    Tejaswi N. Rao
    Edward J. Ciaccio
    U. Rajendra Acharya
    Journal of Medical Systems, 2019, 43
  • [3] Automated Detection of Suspected Glaucoma in Digital Fundus Images
    Sengar, Namita
    Dutta, Malay Kishore
    Burget, Radim
    Ranjoha, Martin
    2017 40TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2017, : 749 - 752
  • [4] Unsupervised Feature Mapping via Stacked Sparse Autoencoder for Automated Detection of Large Pulmonary Nodules in CT Images
    Gupta, Anindya
    Saar, Tonis
    Martens, Olev
    Le Moullec, Yannick
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2017, 23 (06) : 59 - 63
  • [5] Glaucoma risk index: Automated glaucoma detection from color fundus images
    Bock, Ruediger
    Meier, Joerg
    Nyul, Laszlo G.
    Hornegger, Joachim
    Michelson, Georg
    MEDICAL IMAGE ANALYSIS, 2010, 14 (03) : 471 - 481
  • [6] Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images
    Xu, Jun
    Xiang, Lei
    Liu, Qingshan
    Gilmore, Hannah
    Wu, Jianzhong
    Tang, Jinghai
    Madabhushi, Anant
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (01) : 119 - 130
  • [7] Automated detection of glaucoma from retinal fundus images using a variety of fundus cameras
    Gunasinghe, Hansi N.
    McKelvie, James
    Koay, Abigail
    Mayo, Michael
    CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2022, 49 (08): : 911 - 911
  • [8] Automated glaucoma screening in retinal fundus images
    Aruchamy, Srinivasan
    Bhattacharjee, Partha
    Sanyal, Goutam
    International Journal of Multimedia and Ubiquitous Engineering, 2015, 10 (09): : 129 - 136
  • [9] Automated Glaucoma Detection in Retinal Fundus Images Using Machine Learning Models
    Hegde, Nagaratna P.
    Sireesha, V.
    Kumar, S. Vinay
    Madarapu, Sathwika
    Thupakula, Sai Varshini
    JOURNAL OF ELECTRICAL SYSTEMS, 2023, 19 (04) : 298 - 314
  • [10] Automated Detection of Mild Glaucoma Stage Using Grayscale Features of Fundus Images
    Eugene, Lim Wei Jie
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2014, 4 (02) : 267 - 271