Global attractor and determining modes for a hyperbolic MHD turbulence Model

被引:15
作者
Catania, Davide [1 ]
机构
[1] Univ Brescia, Fac Engn, Dept Math, Brescia, Italy
关键词
magnetohydrodynamics; MHD-alpha models; MHD-Voight model; regularizing MHD; damped hyperbolic system; turbulence models; incompressible fluid; global attractor; determining modes; CLASSICAL-SOLUTIONS; REGULARITY; EXISTENCE;
D O I
10.1080/14685248.2011.619986
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Magnetohydrodynamics (MHD)-alpha models are regularized systems used to study the turbulent flow of a magnetofluid, because of the impossibility to handle non-regularized models either analitically or numerically. In order to establish the validity of a model as a large eddy simulation model, one needs to test properties related to the number of degrees of freedom of long-time dynamics of the solutions. Preliminary information is provided by estimates concerning the number of determining modes. We consider the MHD-Voight model for an incompressible fluid and find estimates for a number of asymptotically determining modes and modes on global attractor.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 29 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]  
[Anonymous], 2001, Encyclopedia of Mathematics and its Applications
[3]  
Berselli LC, 2006, SCI COMPUT, P1
[4]   Global Classical Solutions for MHD System [J].
Casella, Emanuela ;
Secchi, Paolo ;
Trebeschi, Paola .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2003, 5 (01) :70-91
[5]  
Catania D., 2010, ANN U FERRARA, V56, P1, DOI DOI 10.1007/S11565-009-0069-1
[6]  
Catania D., 2010, J MATH PHYS, V52, P1
[7]   Global existence for two regularized MHD models in three space-dimension [J].
Catania, Davide ;
Secchi, Paolo .
PORTUGALIAE MATHEMATICA, 2011, 68 (01) :41-52
[9]  
Catania D, 2010, COMMUN MATH SCI, V8, P1021
[10]   Global Cauchy Problem for the 2-D Magnetohydrodynamic-α Models with Partial Viscous Terms [J].
Fan, Jishan ;
Ozawa, Tohru .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2010, 12 (02) :306-319