Moisture Transport versus Precipitation Change in Sub-Basins of the Yangtze River Basin

被引:0
|
作者
Chen, Jihua [1 ,2 ]
Li, Ying [1 ,2 ]
Wang, Yingfei [2 ,3 ]
Zhou, Shuangshuang [2 ,3 ]
Yuan, Xi [1 ,2 ,3 ]
Xiong, Biao [2 ,3 ]
Huang, Yingping [1 ,2 ,3 ]
机构
[1] China Three Gorges Univ, Coll Hydraul & Environm Engn, Yichang 443002, Peoples R China
[2] China Three Gorges Univ, Minist Educ, Engn Res Ctr Ecoenvironm Three Gorges Reservoir R, Yichang 443002, Peoples R China
[3] China Three Gorges Univ, Hubei Engn Technol Res Ctr Farmland Environm Moni, Yichang 443002, Peoples R China
基金
美国国家科学基金会;
关键词
Yangtze River Basin; precipitation change; moisture transport; total column water vapor; wet and dry years; SUMMER PRECIPITATION; EXTREME PRECIPITATION; RECENT PROGRESS; VARIABILITY; REANALYSES; MONSOON; CHINA; OCEAN; LAND; MECHANISMS;
D O I
10.3390/w14040622
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Yangtze River Basin (YRB) exhibits great climate heterogeneity, from high-elevated source areas dominated by westerlies to downstream wetlands sensitive to monsoon flows. However, the atmospheric hydrological cycle and associated precipitation changes are rarely being synthetically studied in different sub-basins of the YRB, which are particularly important since floods in the main stream largely result from the superposition of precipitation-runoff peaks from different sub-basins. By dividing the entire YRB into 12 sub-basins, this study presents a preliminary analysis of precipitation features and the associated moisture transport characteristics at the sub-basin scale during 1961-2015. Results suggest that the peak month of precipitation in the northwest sub-basins (July) is one month later than that in the southeast sub-basins (June). The highest total column water vapor (TCWV) contributes to the peak precipitation in July in the northwest sub-basins, while the peak precipitation in June in the southeast sub-basins is more relative to the interaction among multi-circulations (featured by relatively high westerly moisture transport and relatively low south monsoon contribution in the progression process of monsoon precipitation belt). The south monsoon moisture during summer seldom reaches the source region basin (SRB), the Jinshajiang River Basin (JRB), and the Mintuojiang River Basin (MTB). During 1961-2015, the precipitation mainly exhibits an "increase-decrease-increase" pattern from the source region to downstream; however, it is unlikely that this pattern is forced by the TCWV and zonal/meridional moisture transport. In addition, the moisture transport anomalies between wet and dry years are also defined in the 12 sub-basins, and these anomalies are characterized by significantly different moisture transport patterns.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Integrating heterogeneous information for modeling non-stationarity of extreme precipitation in the Yangtze River Basin
    Liu, Yangyi
    Chen, Jie
    Xiong, Lihua
    Xu, Chong-Yu
    JOURNAL OF HYDROLOGY, 2024, 645
  • [42] Changes in extreme precipitation in the Yangtze River basin and its association with global mean temperature and ENSO
    Lu, Mingquan
    Wu, Sheng-Jun
    Chen, Jilong
    Chen, Chundi
    Wen, Zhaofei
    Huang, Yuanyang
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2018, 38 (04) : 1989 - 2005
  • [43] Projection of Future Summer Precipitation over the Yellow River Basin: A Moisture Budget Perspective
    Li, Jiao
    Zhao, Yang
    Tang, Zhenfei
    ATMOSPHERE, 2020, 11 (12) : 1 - 13
  • [44] Interdecadal Change in the Effect of Spring Soil Moisture over the Indo-China Peninsula on the Following Summer Precipitation over the Yangtze River Basin
    Gao, Chujie
    Li, Gen
    Chen, Haishan
    Yan, Hong
    JOURNAL OF CLIMATE, 2020, 33 (16) : 7063 - 7082
  • [45] Impacts of land use change on thermodynamic and dynamic changes of precipitation for the Yangtze River Basin, China
    Lin, Qian
    Chen, Jie
    Li, Wei
    Huang, Kailin
    Tan, Xuezhi
    Chen, Hua
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2021, 41 (06) : 3598 - 3614
  • [46] Atmospheric moisture budget and floods in the Yangtze River basin, China
    Zengxin Zhang
    Qiang Zhang
    Chongyu Xu
    Chunling Liu
    Tong Jiang
    Theoretical and Applied Climatology, 2009, 95 : 331 - 340
  • [47] Spatial and temporal variation of extreme precipitation indices in the Yangtze River basin, China
    Guo, Jiali
    Guo, Shenglian
    Li, Yu
    Chen, Hua
    Li, Tianyuan
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2013, 27 (02) : 459 - 475
  • [48] Evaluation of multi-source precipitation products over the Yangtze River Basin
    Wang, Wei
    Lin, Hui
    Chen, Nengcheng
    Chen, Zeqiang
    ATMOSPHERIC RESEARCH, 2021, 249
  • [49] On the response of daily precipitation extremes to local mean temperature in the Yangtze River basin
    Jiang, Yan
    He, Xinguang
    Li, Jiajia
    Zhang, Xinping
    ATMOSPHERIC RESEARCH, 2024, 300
  • [50] Simulation of extreme precipitation over the Yangtze River Basin using Wakeby distribution
    Buda Su
    Zbigniew W. Kundzewicz
    Tong Jiang
    Theoretical and Applied Climatology, 2009, 96 : 209 - 219