Interfacial States Cause Equal Decay of Plasmons and Hot Electrons at Gold-Metal Oxide Interfaces

被引:51
作者
Foerster, Benjamin [5 ,6 ]
Hartelt, Michael [1 ,2 ]
Collins, Sean S. E. [3 ]
Aeschlimann, Martin [1 ,2 ]
Link, Stephan [3 ,4 ]
Soennichsen, Carsten [5 ]
机构
[1] Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany
[3] Rice Univ, Dept Chem, POB 1892, Houston, TX 77005 USA
[4] Rice Univ, Dept Elect & Comp Engn, POB 1892, Houston, TX 77005 USA
[5] Johannes Gutenberg Univ Mainz, Inst Phys Chem, D-55128 Mainz, Germany
[6] Johannes Gutenberg Univ Mainz, Grad Sch Excellence Mat Sci Mainz, D-55128 Mainz, Germany
基金
欧洲研究理事会;
关键词
single particle spectroscopy; plasmon damping; two photon photoemission; hot electron decay; metal/semiconductor interface; interfacial states; SURFACE-PLASMON; NANORODS; NANOSTRUCTURES; NANOPARTICLES; SCATTERING; RESONANCE; LINEWIDTH; DYNAMICS;
D O I
10.1021/acs.nanolett.0c00223
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We compare the decay of plasmons and "conventional" hot electrons within the same series of gold/metal oxide interfaces. We found an accelerated decay of hot electrons at gold-metal oxide interfaces with decreasing band gap of the oxide material. The decay is accelerated by the increased phase space for electron scattering caused by additional interfacial states. Since plasmons decay faster within the same series of gold-metal oxide interfaces, we propose plasmons are able to decay into the same interfacial states as hot electrons. The similarity of plasmon damping to conventional hot electron decay implies that many classical surface analysis techniques and theoretical concepts are transferable to plasmonic systems. Our results support the mechanism of direct decay of plasmons into interfacial hot electron pairs but the utility of these interfacial states for charge transfer reactions remains to be investigated.
引用
收藏
页码:3338 / 3343
页数:6
相关论文
共 36 条
[1]   Transport and dynamics of optically excited electrons in metals [J].
Aeschlimann, M ;
Bauer, M ;
Pawlik, S ;
Knorren, R ;
Bouzerar, G ;
Bennemann, KH .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2000, 71 (05) :485-491
[2]  
[Anonymous], 1995, OPTICAL PROPERTIES M
[3]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[4]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/nnano.2014.311, 10.1038/NNANO.2014.311]
[5]   Single-Particle Spectroscopy Reveals Heterogeneity in Electrochemical Tuning of the Localized Surface Plasmon [J].
Byers, Chad P. ;
Hoener, Benjamin S. ;
Chang, Wei-Shun ;
Yorulmaz, Mustafa ;
Link, Stephan ;
Landes, Christy F. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (49) :14047-14055
[6]  
Clavero C, 2014, NAT PHOTONICS, V8, P95, DOI [10.1038/nphoton.2013.238, 10.1038/NPHOTON.2013.238]
[7]   Optical absorption and scattering spectroscopies of single nano-objects [J].
Crut, Aurelien ;
Maioli, Paolo ;
Del Fatti, Natalia ;
Vallee, Fabrice .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (11) :3921-3956
[8]   Making waves: Radiation damping in metallic nanostructures [J].
Devkota, Tuphan ;
Brown, Brendan S. ;
Beane, Gary ;
Yu, Kuai ;
Hartland, Gregory V. .
JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (08)
[9]   SURFACE-PLASMON-ONE-ELECTRON DECAY AND ITS OBSERVATION IN PHOTOEMISSION [J].
ENDRIZ, JG ;
SPICER, WE .
PHYSICAL REVIEW LETTERS, 1970, 24 (02) :64-&
[10]   Plasmon damping depends on the chemical nature of the nanoparticle interface [J].
Foerster, Benjamin ;
Spata, Vincent A. ;
Carter, Emily A. ;
Soennichsen, Carsten ;
Link, Stephan .
SCIENCE ADVANCES, 2019, 5 (03)